A HER2 bispecific antibody can be efficiently expressed in Escherichia coli with potent cytotoxicity

  • Authors:
    • Limin Lin
    • Li Li
    • Changhua Zhou
    • Jing Li
    • Jiayu Liu
    • Rui Shu
    • Bin Dong
    • Qing Li
    • Zhong Wang
  • View Affiliations

  • Published online on: May 11, 2018     https://doi.org/10.3892/ol.2018.8698
  • Pages: 1259-1266
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Bispecific antibodies have been actively studied for cancer therapy due to their potent cytotoxicity against tumor cells. A number of bispecific antibody formats have exhibited strong tumor cytotoxicity in vitro and in vivo. However, effective production of bispecific antibodies remains challenging for the majority of bispecific antibody formats. In the present study, a bispecific antibody was designed that links a conventional antigen‑binding fragment (Fab) against cluster of differentiation 3 antigen (CD3) to a camel single domain antibody (VHH) against human epidermal growth factor receptor 2 (HER2). This bispecific antibody may be secreted and purified efficiently from Escherichia coli culture medium. The purified bispecific antibody is able to trigger T cell‑mediated HER2‑specific cytotoxicity in vitro and in vivo. The data gathered in the present study suggest that this bispecific format may be applied to other tumor antigens to produce bispecific antibodies more efficiently.

References

1 

Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A and McGuire WL: Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 235:177–182. 1987. View Article : Google Scholar : PubMed/NCBI

2 

Press MF, Pike MC, Hung G, Zhou JY, Ma Y, George J, Dietz-Band J, James W, Slamon DJ, Batsakis JG, et al: Amplification and overexpression of HER-2/neu in carcinomas of the salivary gland: Correlation with poor prognosis. Cancer Res. 54:5675–5682. 1994.PubMed/NCBI

3 

Daniele L and Sapino A: Anti-HER2 treatment and breast cancer: State of the art, recent patents, and new strategies. Recent Pat Anticancer Drug Discov. 4:9–18. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Yarden Y: Biology of HER2 and its importance in breast cancer. Oncology. 61 Suppl 2:S1–S13. 2001. View Article : Google Scholar

5 

Ben-Kasus T, Schechter B, Lavi S, Yarden Y and Sela M: Persistent elimination of ErbB-2/HER2-overexpressing tumors using combinations of monoclonal antibodies: Relevance of receptor endocytosis. Proc Natl Acad Sci USA. 106:3294–3299. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Keler T, Graziano RF, Mandal A, Wallace PK, Fisher J, Guyre PM, Fanger MW and Deo YM: Bispecific antibody-dependent cellular cytotoxicity of HER2/neu-overexpressing tumor cells by Fc gamma receptor type I-expressing effector cells. Cancer Res. 57:4008–4014. 1997.PubMed/NCBI

7 

Vasconcellos FA, Aleixo PB, Stone SC, Conceicao FR, Dellagostin OA and Aleixo JA: Generation and characterization of new HER2 monoclonal antibodies. Acta Histochem. 115:240–244. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Vaneycken I, Devoogdt N, Van Gassen N, Vincke C, Xavier C, Wernery U, Muyldermans S, Lahoutte T and Caveliers V: Preclinical screening of anti-HER2 nanobodies for molecular imaging of breast cancer. FASEB J. 25:2433–2446. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Hicks DG and Kulkarni S: HER2+ breast cancer: Review of biologic relevance and optimal use of diagnostic tools. Am J Clin Pathol. 129:263–273. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Ranson M and Sliwkowski MX: Perspectives on anti-HER monoclonal antibodies. Oncology. 63 Suppl 1:S17–S24. 2002. View Article : Google Scholar

11 

Hudis CA: Trastuzumab-mechanism of action and use in clinical practice. N Engl J Med. 357:39–51. 2007. View Article : Google Scholar : PubMed/NCBI

12 

Spector NL and Blackwell KL: Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol. 27:5838–5847. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Valabrega G, Montemurro F and Aglietta M: Trastuzumab: Mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Ann Oncol. 18:977–984. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Junttila TT, Parsons K, Olsson C, Lu Y, Xin Y, Theriault J, Crocker L, Pabonan O, Baginski T, Meng G, et al: Superior in vivo efficacy of afucosylated trastuzumab in the treatment of HER2-amplified breast cancer. Cancer Res. 70:4481–4489. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F and Gianni L: Treatment of HER2-positive breast cancer: Current status and future perspectives. Nat Rev Clin Oncol. 9:16–32. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Benchetrit F, Gazagne A, Adotevi O, Haicheur N, Godard B, Badoual C, Fridman WH and Tartour E: Cytotoxic T lymphocytes: Role in immunosurveillance and in immunotherapy. Bull Cancer. 90:677–685. 2003.PubMed/NCBI

17 

Nagorsen D, Bargou R, Ruttinger D, Kufer P, Baeuerle PA and Zugmaier G: Immunotherapy of lymphoma and leukemia with T-cell engaging BiTE antibody blinatumomab. Leuk Lymphoma. 50:886–891. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Junttila TT, Li J, Johnston J, Hristopoulos M, Clark R, Ellerman D, Wang BE, Li Y, Mathieu M, Li G, et al: Antitumor efficacy of a bispecific antibody that targets HER2 and activates T cells. Cancer Res. 74:5561–5571. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Baeuerle PA and Reinhardt C: Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. 69:4941–4944. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Schlereth B, Fichtner I, Lorenczewski G, Kleindienst P, Brischwein K, da Silva A, Kufer P, Lutterbuese R, Junghahn I, Kasimir-Bauer S, et al: Eradication of tumors from a human colon cancer cell line and from ovarian cancer metastases in immunodeficient mice by a single-chain Ep-CAM-/CD3-bispecific antibody construct. Cancer Res. 65:2882–2889. 2005. View Article : Google Scholar : PubMed/NCBI

21 

Taki S, Kamada H, Inoue M, Nagano K, Mukai Y, Higashisaka K, Yoshioka Y, Tsutsumi Y and Tsunoda S: A novel bispecific antibody against human CD3 and ephrin receptor A10 for breast cancer therapy. PLoS One. 10:e01447122015. View Article : Google Scholar : PubMed/NCBI

22 

Dreier T, Lorenczewski G, Brandl C, Hoffmann P, Syring U, Hanakam F, Kufer P, Riethmuller G, Bargou R and Baeuerle PA: Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer. 100:690–697. 2002. View Article : Google Scholar : PubMed/NCBI

23 

Oak E and Bartlett NL: Blinatumomab for the treatment of B-cell lymphoma. Expert Opin Investig Drugs. 24:715–724. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Haense N, Atmaca A, Pauligk C, Steinmetz K, Marmé F, Haag GM, Rieger M, Ottmann OG, Ruf P, Lindhofer H and Al-Batran SE: A phase I trial of the trifunctional anti HER2 × anti CD3 antibody ertumaxomab in patients with advanced solid tumors. BMC Cancer. 16:4202016. View Article : Google Scholar : PubMed/NCBI

25 

Vaishampayan U, Thakur A, Rathore R, Kouttab N and Lum LG: Phase I study of Anti-CD3 × Anti-HER2 bispecific antibody in metastatic castrate resistant prostate cancer patients. Prostate Cancer. 2015:2851932015. View Article : Google Scholar : PubMed/NCBI

26 

Cao Y, Axup JY, Ma JS, Wang RE, Choi S, Tardif V, Lim RK, Pugh HM, Lawson BR, Welzel G, et al: Multiformat T-cell-engaging bispecific antibodies targeting human breast cancers. Angew Chem Int Ed Engl. 54:7022–7027. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Zhou Y, Gou LT, Guo ZH, Liu HR, Wang JM, Zhou SX, Yang JL and Li XA: Fully human HER2/cluster of differentiation 3 bispecific antibody triggers potent and specific cytotoxicity of T lymphocytes against breast cancer. Mol Med Rep. 12:147–154. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Li A, Xing J, Li L, Zhou C, Dong B, He P, Li Q and Wang Z: A single-domain antibody-linked Fab bispecific antibody HER2-S-Fab has potent cytotoxicity against HER2-expressing tumor cells. AMB Express. 6:322016. View Article : Google Scholar : PubMed/NCBI

29 

Li L, He P, Zhou C, Jing L, Dong B, Chen S, Zhang N, Liu Y, Miao J, Wang Z and Li Q: A novel bispecific antibody, S-Fab, induces potent cancer cell killing. J Immunother. 38:350–356. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Vincke C, Loris R, Saerens D, Martinez-Rodriguez S, Muyldermans S and Conrath K: General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem. 284:3273–3284. 2009. View Article : Google Scholar : PubMed/NCBI

31 

Shalaby MR, Shepard HM, Presta L, Rodrigues ML, Beverley PC, Feldmann M and Carter P: Development of humanized bispecific antibodies reactive with cytotoxic lymphocytes and tumor cells overexpressing the HER2 protooncogene. J Exp Med. 175:217–225. 1992. View Article : Google Scholar : PubMed/NCBI

32 

von Roman Freiherr M, Koller A, von Rüden D and Berensmeier S: Improved extracellular expression and purification of recombinant Staphylococcus aureus protein A. Protein Expr Purif. 93:87–92. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Yoon SH, Kim SK and Kim JF: Secretory production of recombinant proteins in Escherichia coli. Recent Pat Biotechnol. 4:23–29. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Kwong KY and Rader C: E. coli expression and purification of Fab antibody fragments. Curr Protoc Protein Sci Chapter 6. Unit 6.10. 2009. View Article : Google Scholar

35 

Skrlj N, Serbec VC and Dolinar M: Single-chain Fv antibody fragments retain binding properties of the monoclonal antibody raised against peptide P1 of the human prion protein. Appl Biochem Biotechnol. 160:1808–1821. 2010. View Article : Google Scholar : PubMed/NCBI

36 

So EC, Sallin MA, Zhang X, Chan SL, Sahni L, Schulze DH, Davila E, Strome SE and Jain A: A high throughput method for enrichment of natural killer cells and lymphocytes and assessment of in vitro cytotoxicity. J Immunol Methods. 394:40–48. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Busch R, Cesar D, Higuera-Alhino D, Gee T, Hellerstein MK and McCune JM: Isolation of peripheral blood CD4(+) T cells using RosetteSep and MACS for studies of DNA turnover by deuterium labeling. J Immunol Methods. 286:97–109. 2004. View Article : Google Scholar : PubMed/NCBI

38 

Rozan C, Cornillon A, Petiard C, Chartier M, Behar G, Boix C, Kerfelec B, Robert B, Pèlegrin A, Chames P, et al: Single-domain antibody-based and linker-free bispecific antibodies targeting FcγRIII induce potent antitumor activity without recruiting regulatory T cells. Mol Cancer Ther. 12:1481–1491. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Choi JH and Lee SY: Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol. 64:625–635. 2004. View Article : Google Scholar : PubMed/NCBI

40 

Fu XY: Extracellular accumulation of recombinant protein by Escherichia coli in a defined medium. Appl Microbiol Biotechnol. 88:75–86. 2010. View Article : Google Scholar : PubMed/NCBI

41 

Scott AM, Wolchok JD and Old LJ: Antibody therapy of cancer. Nat Rev Cancer. 12:278–287. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Osada T, Patel SP, Hammond SA, Osada K, Morse MA and Lyerly HK: CEA/CD3-bispecific T cell-engaging (BiTE) antibody-mediated T lymphocyte cytotoxicity maximized by inhibition of both PD1 and PD-L1. Cancer Immunol Immunother. 64:677–688. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Karagiannis P, Singer J, Hunt J, Gan SK, Rudman SM, Mechtcheriakova D, Knittelfelder R, Daniels TR, Hobson PS, Beavil AJ, et al: Characterisation of an engineered trastuzumab IgE antibody and effector cell mechanisms targeting HER2/neu-positive tumour cells. Cancer Immunol Immunother. 58:915–930. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Lambertini M, Ponde NF, Solinas C and de Azambuja E: Adjuvant trastuzumab: A 10-year overview of its benefit. Expert Rev Anticancer Ther. 17:61–74. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Xin Y, Guo WW, Huang Q, Zhang P, Zhang LZ, Jiang G and Tian Y: Effects of lapatinib or trastuzumab, alone and in combination, in human epidermal growth factor receptor 2-positive breast cancer: A meta-analysis of randomized controlled trials. Cancer Med. 5:3454–3463. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Malenfant SJ, Eckmann KR and Barnett CM: Pertuzumab: A new targeted therapy for HER2-positive metastatic breast cancer. Pharmacotherapy. 34:60–71. 2014. View Article : Google Scholar : PubMed/NCBI

47 

Zazo S, Gonzalez-Alonso P, Martin-Aparicio E, Chamizo C, Cristóbal I, Arpí O, Rovira A, Albanell J, Eroles P, Lluch A, et al: Generation, characterization, and maintenance of trastuzumab-resistant HER2+ breast cancer cell lines. Am J Cancer Res. 6:2661–2678. 2016.PubMed/NCBI

48 

James ND, Atherton PJ, Jones J, Howie AJ, Tchekmedyian S and Curnow RT: A phase II study of the bispecific antibody MDX-H210 (anti-HER2 × CD64) with GM-CSF in HER2+ advanced prostate cancer. Br J Cancer. 85:152–156. 2001. View Article : Google Scholar : PubMed/NCBI

49 

Zhu Z and Carter P: Identification of heavy chain residues in a humanized anti-CD3 antibody important for efficient antigen binding and T cell activation. J Immunol. 155:1903–1910. 1995.PubMed/NCBI

50 

Loffler A, Kufer P, Lutterbüse R, Zettl F, Daniel PT, Schwenkenbecher JM, Riethmuller G, Dörken B and Bargou RC: A recombinant bispecific single-chain antibody, CD19 × CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood. 95:2098–2103. 2000.PubMed/NCBI

51 

Qasemi M, Behdani M, Shokrgozar MA, Molla-Kazemiha V, Mohseni-Kuchesfahani H and Habibi-Anbouhi M: Construction and expression of an anti-VEGFR2 Nanobody-Fc fusionbody in NS0 host cell. Protein Expr Purif. 123:19–25. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Mergulhao FJ, Summers DK and Monteiro GA: Recombinant protein secretion in Escherichia coli. Biotechnol Adv. 23:177–202. 2005. View Article : Google Scholar : PubMed/NCBI

53 

Khushoo A, Pal Y, Singh BN and Mukherjee KJ: Extracellular expression and single step purification of recombinant Escherichia coli L-asparaginase II. Protein Expr Purif. 38:29–36. 2004. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

July 2018
Volume 16 Issue 1

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Lin, L., Li, L., Zhou, C., Li, J., Liu, J., Shu, R. ... Wang, Z. (2018). A HER2 bispecific antibody can be efficiently expressed in Escherichia coli with potent cytotoxicity. Oncology Letters, 16, 1259-1266. https://doi.org/10.3892/ol.2018.8698
MLA
Lin, L., Li, L., Zhou, C., Li, J., Liu, J., Shu, R., Dong, B., Li, Q., Wang, Z."A HER2 bispecific antibody can be efficiently expressed in Escherichia coli with potent cytotoxicity". Oncology Letters 16.1 (2018): 1259-1266.
Chicago
Lin, L., Li, L., Zhou, C., Li, J., Liu, J., Shu, R., Dong, B., Li, Q., Wang, Z."A HER2 bispecific antibody can be efficiently expressed in Escherichia coli with potent cytotoxicity". Oncology Letters 16, no. 1 (2018): 1259-1266. https://doi.org/10.3892/ol.2018.8698