Abstract. The present study aimed to investigate the potential role of long non-coding RNA growth arrest-specific transcript 5 (lncRNA GAS5) in the progression of esophageal squamous cell carcinoma (ESCC) and to reveal its possible regulatory mechanism. The expression of lncRNA GAS5 in ESCC tissues and cell lines was analyzed using reverse transcription-quantitative polymerase chain reaction and western blot analysis. The overexpression vector pc-GAS5 and control vector pc-negative control (NC), containing no GAS5 sequence, were transfected into ESCC cells. The effects of lncRNA GAS5 overexpression on cell proliferation, cell cycle distribution, cell migration and invasion were then analyzed. Besides, the expression levels of ATM-CHK2 pathway-associated proteins and epithelial-mesenchymal transition (EMT)-associated proteins were measured. Expression of lncRNA GAS5 was downregulated in the ESCC tissues compared with adjacent normal tissues, and was also downregulated in ESCC Kyse450 cells compared with the human esophageal epithelial HET-1A cell line. Additionally, lncRNA GAS5 was successfully overexpressed in ESCC cells following transfection with pc-GAS5. Overexpression of lncRNA GAS5 significantly inhibited cell proliferation, induced cell cycle arrest at G2/M phase and suppressed cellular migration and invasion. When cells were transfected with pc-GAS5, the levels of phosphorylated (p)-ATM serine/threonine protein kinase, p-checkpoint kinase 2 (CHK2), p-cell division cycle 25C, p-cyclin-dependent kinase 1, N-cadherin, vimentin and Snail were significantly increased, whereas that of E-cadherin were markedly decreased. The results of the present study indicate that overexpression of lncRNA GAS5 may inhibit cell proliferation, migration and invasion in ESCC. lncRNA GAS5 overexpression may induce cell cycle arrest at G2/M stage by activating the ATM-CHK2 pathway. The results of the current study further indicate that lncRNA GAS5 overexpression may suppress cell migration and invasion via EMT-associated proteins. lncRNA GAS5 could therefore serve as a potential target for ESCC therapy.

Introduction

Human esophageal cancer is a common malignant tumor with a high mortality rate (>300,000 deaths every year) globally (1,2), with >90% of cases made up of esophageal squamous cell carcinoma (ESCC) (3). The high recurrence rate following surgery is one of the main reasons for the poor prognosis of patients with ESCC (4). However, to the best of our knowledge, the genetic mechanisms underlying the tumorigenesis and poor prognosis of ESCC are largely unknown (5). Therefore, elucidation of the key molecular mechanisms underlying ESCC will aid the development of novel therapeutic approaches.

Long non-coding RNAs (lncRNAs) are mRNA-like transcripts ranging in length from 200 to 100,000 nt, but they do not function as templates for protein synthesis owing to a lack of open-reading frames (6,7). Several lncRNAs have been identified as key players to serve oncogenic or tumor suppressive roles in a variety of cancer types (6,7), including ESCC (8). For instance, upregulation of lncRNA nuclear enriched abundant transcript 1 is associated with the progression and poor prognosis of ESCC (9). Upregulation of lncRNA H19 is also able to promote cellular proliferation and metastasis in ESCC (10). Knockdown of lncRNA P73 antisense RNA 1T has also been shown to inhibit cell proliferation and induce apoptosis in ESCC (11).
Growth arrest-specific transcript 5 (GAS5) was originally identified as a potential tumor suppressor gene involved in arresting cellular growth (12). However, the putative open-reading frame GAS5 is small and poorly conserved, indicating that the biological activity of GAS5 is mediated through the introns (13). Evidence indicates that GAS5 is a tumor-suppressor IncRNA, regulating cellular apoptosis in prostate cancer (14). Downregulation of IncRNA GAS5 can promote cellular proliferation and invasion in hepatocellular carcinoma (15). GAS5 overexpression inhibits cell growth and induces apoptosis in non-small-cell lung cancer cells, indicating that GAS5 has the potential to serve as a diagnostic marker for non-small cell lung cancer (16). Despite these findings, the roles and regulatory mechanism of IncRNA GAS5 in ESCC remain uncertain.

The present study investigated whether IncRNA GAS5 was dysregulated in ESCC tissues and cells. Next, the effects of IncRNA GAS5 overexpression on ESCC cellular proliferation, cell cycle arrest and cell migration and invasion were measured. In addition, the expression levels of ataxia telangiectasia-mutated (ATM)-checkpoint kinase 2 (CHK2) pathway-associated proteins and epithelial-mesenchymal transition (EMT)-associated proteins were assessed. The present study aimed to investigate the potential roles of IncRNA GAS5 in the ESCC development and to elucidate its possible regulatory mechanisms.

Materials and methods

Patient collections. A total of 36 ESCC patients admitted to the Department of Cardiothoracic Surgery of the Affiliated Hospital of Hubei Polytechnic University (Huangshi, China) between March 2013 and January 2016 were included in the present study. The diagnosis of ESCC was pathologically confirmed. Cancer tissues and their adjacent normal tissues were obtained from clinically resected surgical specimens. All the specimens were snap-frozen in liquid nitrogen and stored at -80˚C until use. This study was approved by the Affiliated Hospital of Hubei Polytechnic University Protection of Human Ethics Committee, and all patients were informed with consent prior to inclusion in the current study.

Cell culture. The esophageal carcinoma Kyse450 cell line and human esophageal epithelial cell line HET-1A were purchased from the American Type Culture Collection (Manassas, VA, USA). All these cells were cultured in RPMI-1640 medium (Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) containing 10% fetal bovine serum (FBS; Gibco; Thermo Fisher Scientific, Inc.) and maintained at 37˚C in a humidified atmosphere with 5% CO₂. After 48 h cultivation, cells were collected for the consequent transfection experiment.

Cell transfection. Oligonucleotide primers containing BamHI or HindIII site were synthesized for amplification of coding sequence of GAS5 (Accession No. AF_314752). The two primers were: Forward, 5'-CGGATGGCATGCTGTTGGT GCAGATGCAAGTGTGc-3' and reverse, 5'-CCGCCTCGAG TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-3'. The amplified GAS5 sequence was then cloned into pcDNA3.0 (Sangon Biotech Co., Ltd., Shanghai, China) via BamHI and HindIII sites to construct the overexpression vector pcDNA3.0-GAS5 (pc-GAS5), which was confirmed by sequencing analysis by Sangong Biotech Co., Ltd. The empty vector pc-negative control (NC) with no GAS5 sequence was used as a negative control. Next, pc-GAS5 (50 nM) or pc-NC (50 nM) were transfected into esophageal carcinoma Kyse450 cells using Lipofectamine® 2000 reagent (Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA, USA) in accordance with the instructions of manufacturer.

MTT assay. Cell proliferation was measured using an MTT assay. Briefly, cells (5x10⁴ cells per well) were plated into 60-mm culture dishes containing RPMI-1640 medium supplemented with 10% FBS. After 14 days, colonies were fixed with ethanol at 4°C for 10 min and stained with 0.1% crystal violet (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) for 30 min at room temperature. Finally, colonies were counted under a light microscope (magnification, ×400).

Cell cycle assay. The cell cycle distribution following transfection was detected by flow cytometry. Briefly, at 96 h after transfection, the transfected cells were cultured in RPMI-1640 with 10% FBS. Cells were then suspended with cold PBS buffer at a volume ratio of 2.5:1 and fixed with methanol at 4˚C for 30 min. Next, Cells were stained at room temperature with 0.1% crystal violet (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) for 30 min at room temperature. Finally, colonies were counted under a light microscope (magnification, ×400).

Colony formation assay. Cell proliferation was also assessed using a clonogenic assay with a modification of previously described method. Briefly, at 96 h after transfection, cells (100 cells per dish) in the logarithmic growth phase were plated into 60-mm culture dishes containing RPMI-1640 medium supplemented with 10% FBS. After 14 days, colonies were fixed with ethanol at 4°C for 10 min and stained with 0.1% crystal violet (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) for 30 min at room temperature. Finally, colonies were counted under a light microscope (magnification, ×400).

Transwell assay. Cell invasion and migration were measured using Transwell assay as previously described. The Transwell chamber (8-µm pore size; Corning Incorporated, Corning, NY, USA) were uncoated for the migration assays or coated with Matrigel (BD Biosciences) for the invasion assays. Briefly, 96 h after transfection with pc-GAS5 and pc-NC, the transfected cells (1x10⁵) cultured in serum-free RPMI 1640 medium were added into the upper layer of Transwell chamber for 30 min at 37°C. RPMI 1640 medium mixed with 10% FBS (as a chemoattractant) was added into the lower layer of the Transwell chamber. After 48 h of incubation, the lower transwell chamber in each group was washed with PBS buffer 3 times, fixed with methanol at 4°C for 10 min, and stained with 0.1%
Western blot assay. At 96 h after transfection with pc-GAS5 and pc-NC, cells were incubated in radioimmunoprecipitation assay buffer (Sangon Biotech Co., Ltd., Shanghai, China) containing phenylmethanesulfonyl fluoride on ice for 20 min and mixed 2-3 times. The supernatant was collected and the protein concentration was determined using a bicinchoninic acid (BCA) assay. A total of 20 µg protein per lane was subjected to 10% SDS-PAGE and then transferred onto a polyvinylidene fluoride membrane. Following blocking in PBST (0.1% Tween 20, 5% non-fat milk powder in PBS), the membranes were incubated with specific primary antibodies against ATM serine/threonine protein kinase (hereafter ATM; cat. no. ab95037), phosphorylated (p)-ATM (cat. no. ab95037), checkpoint kinase 2 (CHK2; cat. no. ab26338), p-CHK2 (cat. no. ab26338), cell division cycle 25C (CDC25C; cat. no. ab32444), p-CDC25C (cat. no. ab32444), cyclin-dependent kinase 1 (CDK1; cat. no. ab133327), E-cadherin (cat. no. ab197751), N-cadherin (cat. no. ab76057), vimentin (cat. no. ab45939) and Snail (cat. no. ab53519; 1:1,000 dilution for all primary antibodies; Abcam, Cambridge, UK) overnight at 4°C, and subsequently probed with horseradish peroxidase-labeled secondary antibody (1:1,000 dilution; cat. no. ab6721; Abcam) at room temperature for 1 h. Finally, the bands were visualized using an enhanced chemiluminescence kit (CEL; Thermo Fisher Scientific, Inc.). GAPDH (1:5,000 dilution; cat. no. ab8245) was considered as the internal control. All primary antibodies were purchased from Abcam. To further quantify the results, the protein blots were scanned and analyzed using ImageQuant software (version TL 7.0; Molecular Dynamics, LLC, Sunnyvale, CA, USA).

Statistical analysis. All statistical analyses in this study were performed using SPSS 19.0 (IBM Corp, Armonk, NY, USA). All experiments in the present study were repeated at least 3 times, and data collected from 3 independent experiments were presented as the mean ± standard deviation. Two-tailed Student's t-test was used to analyze the difference in GAS5 expression between cancer tissues and their adjacent normal tissues. Pearson's correlation coefficient analysis was used to calculate the correlation between the expression of GAS5 and p-ATM or p-CHK2 in cancer tissues. One-way analysis of variance was used to detect the significant differences in the effects of GAS5 on cell proliferation, migration and invasion in differently transfected groups. A threshold of P<0.05 was considered to indicate a statistically significant difference.

Results
LncRNA GAS5 is downregulated in ESCC tissues and cells. The present study investigated the expression of lncRNA GAS5 in ESCC tissues and cells by RT-qPCR analysis. As shown in Fig. 1A, GAS5 expression was significantly downregulated in ESCC tissues compared with the adjacent normal tissues (P<0.01). In addition, the expression of GAS5 in esophageal carcinoma cell line Kyse450 was significantly lower than that in the normal esophageal epithelial cell line HET-1A (P<0.01; Fig. 1B).

Overexpression of lncRNA GAS5 inhibits cell proliferation. To investigate the role of GAS5 in ESCC, GAS5 was successfully overexpressed in ESCC cells following transfection with pc-GAS5 (P<0.01; Fig. 2A). Subsequently, the effects
of GAS5 on cell proliferation were assessed using MTT and colony-formation assays. Similar results were obtained using the two assays, which found that, in comparison with the control group, cell viability and the number of colony of pc-GAS5 group were significantly decreased (P<0.05; Fig. 2B-D), indicating that the overexpression of lncRNA GAS5 significantly inhibited cell proliferation.

Overexpression of lncRNA GAS5 induces cell cycle arrest at G2/M stage by activating the ATM-CHK2 pathway. The effect of lncRNA GAS5 was assessed on the cell cycle using flow cytometry. As presented in Fig. 3A, the percentage of cells in the G0/G1 stage in the pc-GAS5 group was significantly decreased compared with that in the pc-NC group (P<0.05), whereas the percentage of cells in the G2/M stage in the pc-GAS5 group was significantly increased (Fig. 3B), suggesting that GAS5 may induce cell cycle arrest at the G2/M stage by activating the ATM-CHK2 pathway.
markedly increased, indicating that overexpression of lncRNA GAS5 may induce cell cycle arrest at G2/M stage.

To investigate the possible mechanism of lncRNA GAS5 on cell-cycle arrest at G2/M stage, the expression levels of ATM-CHK2 pathway-associated proteins were analyzed. As presented in Fig. 3B and C, there were no significant differences in the protein expression levels of ATM, CHK2, CDC25C and CDK1, whereas the levels of p-ATM, p-CHK2, p-CDC25C and p-CDK1 proteins were significantly increased when cells were transfected with pc-GAS5 compared with that in the pc-NC group (P<0.05). In addition, the levels of p-ATM and p-CHK2 in ESCC tissues were found to be significantly lower than that in the adjacent normal tissues (P<0.05; Fig. 3D and E). Pearson's correlation analysis revealed that the levels of p-ATM and p-CHK2 were positively correlated with GAS5 expression in cancer tissues (P<0.001; Fig. 3F and G).

Overexpression of lncRNA GAS5 suppresses cell migration and invasion via inhibiting expression of EMT-associated proteins. The roles of lncRNA GAS5 in regulating cell migration and invasion were further evaluated using transwell migration and invasion assays. As shown in Fig. 4, the number of migrated cells and invaded cells in the pc-GAS5 group were all significantly less than those in the pc-NC group (P<0.05).

The expression levels of EMT-associated proteins, including E-cadherin, N-cadherin, vimentin and Snail, were investigated. The results of this analysis revealed that once GAS5 was overexpressed, the expressions of E-cadherin were significantly decreased, whereas the expression levels of N-cadherin, vimentin and Snail were markedly increased (P<0.05; Fig. 5), indicating that overexpression of lncRNA GAS5 may suppress cell migration and invasion by inhibiting EMT-associated proteins.

Discussion

Prior studies identified a large number of lncRNAs that are involved in the cancer progression (6-8); however, to the best of our knowledge, their function remains largely unknown. The present study focused on the roles of lncRNA GAS5 in the development of ESCC. GAS5 was downregulated in ESCC tissues compared with adjacent normal tissues. Consistently, previous findings have demonstrated that GAS5 and/or its small nucleolar RNAs are downregulated in multiple cancer
types, including breast cancer (18), renal cell carcinoma (19) and glioma (20). Additionally, the results of the present study revealed that overexpression of GAS5 significantly inhibited cell proliferation, arrested cell cycle and suppressed cell migration and invasion. Therefore, the observations from the current study indicate that deregulation of GAS5 may serve roles in the progression of ESCC.

It has reported that activating checkpoints, particularly S and G2 phase, can effectively arrest cell proliferation in various types of cancer (21). Loss of ATM-CHK2-tumor protein p53 pathway components has been shown to accelerate tumor development in gliomas (22). Additionally, hepatitis B virus X protein can delay the cell cycle progression in liver cancer by activating the ATM-Chk2 pathway (23). Naphthalimides have been confirmed to induce G2 arrest in HCT116 cells via activating the ATM-CHK2 pathway (24). In the present study, the levels of key proteins involved in ATM-CHK2 pathway, including p-ATM and p-CHK2, were significantly increased in pc-GAS5 transfected cells and ESCC tissues. Pearson’s correlation analysis demonstrated that the expression levels of p-ATM and p-CHK2 were positively correlated with GAS5 expression. On the basis of the experimental results of the current study, we hypothesize that GAS5 may induce cell cycle arrest at the G2/M stage in ESCC via activation of the ATM-CHK2 pathway. Furthermore, bendamustine also induces G2 phase cell cycle arrest in myeloma cells via regulating ATM-CHK2-CDC25A pathway (25). Phosphatase and tensin homolog (PTEN) contributes to the DNA damage response and induces G2/M phase arrest in etoposide-treated MCF-7 cells through activation of the ATM-CHK2 pathway (26). It can therefore be speculated that GAS5 could be involved in drug therapy for ESCC via activation of the ATM-CHK2 pathway.

In addition, EMT is shown to be implicated in the migration and invasion in a variety of cancer types (27,28), including ESCC (29). Aberrant expression of E-cadherin is
widely involved in the invasion and metastasis in ESCC (30). Certain tumor-associated molecules, such as a disintegrin and metalloprotease 10 (ADAM10), have been shown to mediate cell invasion and metastasis in ESCC by regulating E-cadherin (31). Additionally, Snail has been reported to serve a notable role in E-cadherin-preserved ESCC (32). In addition, the knockdown of N-cadherin in vitro can decrease the invasiveness of ESCC (33). Wang et al (34) demonstrated that N-cadherin contributed to the invasion and metastasis in ESCC by regulating the formation of vasculogenic mimicry. Additionally, vimentin has been reported to drive lymph node metastasis in ESCC in an aggressive manner (35). The results of the current study also verified that the number of migrated cells and invaded cells in pc-GAS5 group were significantly lower that of the pc-NC group. Following overexpression of GAS5, the expression of E-cadherin was significantly decreased, whereas those of N-cadherin, vimentin and Snail were markedly increased. Although the regulatory mechanism of GAS5 in cellular migration and invasion has not been fully investigated, based on the experimental results of the present study we hypothesize that IncRNA GAS5 may regulate cell migration and invasion in ESCC by altering the expression of EMT-associated proteins.

The present study did not consider whether IncRNA GAS5 dysregulation in ESCC was dependent on the stage, invasion, lymph node/distant metastasis, differentiation or any other clinicopathological characteristic of patients, which was a limitation of the present study. If the associations between the expression of IncRNA GAS5 and clinicopathological characteristics of patients are to be analyzed, the findings could provide a broader perspective on the potential applications of IncRNA GAS5 in cancer therapy.

In conclusion, the findings of the present study indicate that the overexpression of IncRNA GAS5 may inhibit cell proliferation, migration and invasion in ESCC. GAS5 may induce cell cycle arrest at G2/M phase by activating the ATM-CHK2 pathway. GAS5 may suppress cellular migration and invasion via EMT-associated proteins. The IncRNA GAS5 could therefore serve as a potential target for the therapy of ESCC.

Acknowledgements

Not applicable.

Funding

No funding was received.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Authors’ contribution

KK prepared the manuscript and conducted the experiments. ZS designed the present study and prepared the patients samples and cell lines. ZW analyzed the data and the performed statistical analysis.

Ethics approval and consent to participate

This study was approved by the Affiliated Hospital of Hubei Polytechnic University Protection of Human Ethics Committee, and all patients provided informed consent prior to their inclusion in the current study.

Consent for publication

The authors declare that all patients enrolled in this study provided informed consent for this publication.

Competing interests

The authors declare that they have no competing interests.

References

