Open Access

A four‑gene signature for prognosis in breast cancer patients with hypermethylated IL15RA

  • Authors:
    • Hui Yang
    • Li Zhou
    • Jianhua Chen
    • Jiang Su
    • Wei Shen
    • Biao Liu
    • Jundong Zhou
    • Shiyou Yu
    • Jun Qian
  • View Affiliations

  • Published online on: March 12, 2019     https://doi.org/10.3892/ol.2019.10137
  • Pages: 4245-4254
  • Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Previous studies have revealed that upregulation of interleukin 15 receptor α (IL15RA) contributes to improved prognosis of breast cancer. The present study aimed to elucidate the molecular mechanisms underlying the antitumor effect induced by IL15RA upregulation, and to identify a gene signature capable of predicting the survival of patients with breast cancer. Using paired gene expression and methylation data of breast cancer samples from The Cancer Genome Atlas data portal, differentially expressed genes (DEGs) were identified in hypermethylated and hypomethylated IL15RA breast cancer samples. Furthermore, a gene signature‑based risk‑scoring model was developed according to the Cox regression coefficients of survival‑associated DEGS. The gene signature was applied to classify patients with breast cancer and hypermethylated IL15RA into two risk groups via Kaplan‑Meier survival analysis of overall survival (OS) time. Functional enrichment analysis was conducted to decipher the biological roles of the DEGs between the two risk groups. A total of 326 DEGs were present in the hypomethylation and hypermethylation samples compared with in the normal samples. A four‑gene signature [SH3 and cysteine rich domain 2 (STAC2), proline rich 11 (PRR11), homeobox C11 (HOXC11) and nucleolar and spindle associated protein 1 (NUSAP1)] was identified as able to successfully separate patients with breast cancer and hypermethylated IL15RA into two risk groups with significantly different OS time. The signature revealed similar predictive performance in an independent set. Significant enrichment of the ‘receptor interaction’ and ‘cell adhesion molecules (CAM)’ pathways, which involved the DEGs, occurred between the two risk groups. These findings suggested that IL15RA may participate in the regulation of STAC2, PRR11, HOXC11, NUSAP1, and ‘ECM‑receptor interaction’ and ‘cell adhesion molecules’ pathways, and therefore in the suppression of breast cancer development and progression. The four‑gene signature may have potential prognostic value for breast cancer.

References

1 

Mcguire S: World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv Nutr. 7:418–419. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, et al: Molecular portraits of human breast tumours. Nature. 406:747–752. 2000. View Article : Google Scholar : PubMed/NCBI

3 

Denkert C, Loibl S, Noske A, Roller M, Müller BM, Komor M, Budczies J, Darb-Esfahani S, Kronenwett R, Hanusch C, et al: Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 28:105–113. 2010. View Article : Google Scholar : PubMed/NCBI

4 

Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, Martino S, Wang M, Jones VE, Saphner TJ, et al: Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Onc. 32:2959–2966. 2014. View Article : Google Scholar

5 

Dieci MV, Mathieu MC, Guarneri V, Conte P, Delaloge S, Andre F and Goubar A: Prognostic and predictive value of tumor-infiltrating lymphocytes in two phase III randomized adjuvant breast cancer trials. Ann Oncol. 26:1698–1704. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, Ellis IO and Green AR: Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 29:1949–1955. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Waldmann T: The contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: Implications for the immunotherapy of rheumatological diseases. Arthritis Res. 4:S161–S167. 2002. View Article : Google Scholar : PubMed/NCBI

8 

Lodolce JP, Burkett PR, Koka RM, Boone DL and Ma A: Regulation of lymphoid homeostasis by interleukin-15. Cytokine Growth Factor Rev. 13:429–439. 2002. View Article : Google Scholar : PubMed/NCBI

9 

Marra P, Mathew S, Grigoriadis A, Wu Y, Kyle-Cezar F, Watkins J, Rashid M, De Rinaldis E, Hessey S, Gazinska P, et al: IL15RA drives antagonistic mechanisms of cancer development and immune control in lymphocyte-enriched triple-negative breast cancers. Cancer Res. 74:4908–4921. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Terunuma A, Putluri N, Mishra P, Mathé EA, Dorsey TH, Yi M, Wallace TA, Issaq HJ, Zhou M, Killian JK, et al: MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J Clin Invest. 124:398–412. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W and Smyth GK: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43:e472015. View Article : Google Scholar : PubMed/NCBI

12 

Wang P, Wang Y, Hang B, Zou X and Mao JH: A novel gene expression-based prognostic scoring system to predict survival in gastric cancer. Oncotarget. 7:55343–55351. 2016.PubMed/NCBI

13 

Thomas PD: The gene ontology and the meaning of biological function. Methods Mol Biol. 1446:15–24. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Kanehisa M, Sato Y, Kawashima M, Furumichi M and Tanabe M: KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44:D457–D462. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC and Lempicki RA: DAVID: Database for Annotation, visualization, and integrated discovery. Genome Biol. 4:P32003. View Article : Google Scholar : PubMed/NCBI

16 

Desantis C, Ma J, Bryan L and Jemal A: Breast cancer statistics, 2013. CA Cancer J Clin. 64:52–62. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Nelson BR, Wu F, Liu Y, Anderson DM, McAnally J, Lin W, Cannon SC, Bassel-Duby R and Olson EN: Skeletal muscle-specific T-tubule protein STAC3 mediates voltage-induced Ca2+ release and contractility. Proc Natl Acad Sci USA. 110:11881–11886. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Zhou F, Liu H, Zhang X, Shen Y, Zheng D, Zhang A, Lai Y and Li H: Proline-rich protein 11 regulates epithelial-to-mesenchymal transition to promote breast cancer cell invasion. Int J Clin Exp Pathol. 7:8692–8699. 2014.PubMed/NCBI

19 

Holland PWH: Evolution of homeobox genes. Wiley Interdisciplinary Rev Dev Biol. 2:31–45. 2013. View Article : Google Scholar

20 

Bhatlekar S, Fields JZ and Boman BM: HOX genes and their role in the development of human cancers. J Mol Med (Berl). 92:811–823. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Makiyama K, Hamada J, Takada M, Murakawa K, Takahashi Y, Tada M, Tamoto E, Shindo G, Matsunaga A, Teramoto K, et al: Aberrant expression of HOX genes in human invasive breast carcinoma. Oncol Rep. 13:673–679. 2005.PubMed/NCBI

22 

Soon YH, Bane F, Hughes E and Young LS: Protein bomarkers Ki67, HOXC10 and HOXC11 for the prediction of response to endocrine treatment in breast cancer. BMC Proc. 9:A522015. View Article : Google Scholar

23 

Ribbeck K, Groen AC, Santarella R, Bohnsack MT, Raemaekers T, Köcher T, Gentzel M, Görlich D, Wilm M, Carmeliet G, et al: NuSAP, a Mitotic RanGTP target that stabilizes and cross-links microtubules. Mol Biol Cell. 17:2646–2660. 2006. View Article : Google Scholar : PubMed/NCBI

24 

Iyer J, Moghe S, Furukawa M and Tsai MY: What's Nu(SAP) in mitosis and cancer? Cell Signal. 23:991–998. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Bidkhori G, Narimani Z, Ashtiani SH, Moeini A, Nowzari-Dalini A and Masoudi-Nejad A: Reconstruction of an integrated genome-scale co-expression network reveals key modules involved in lung adenocarcinoma. PLoS One. 8:e675522013. View Article : Google Scholar : PubMed/NCBI

26 

Espinosa AM, Alfaro A, Roman-Basaure E, Guardado-Estrada M, Palma Í, Serralde C, Medina I, Juárez E, Bermúdez M, Márquez E, et al: Mitosis is a source of potential markers for screening and survival and therapeutic targets in cervical cancer. PLoS One. 8:e559752013. View Article : Google Scholar : PubMed/NCBI

27 

Gulzar ZG, Mckenney JK and Brooks JD: Increased expression of NuSAP in recurrent prostate cancer is mediated by E2F1. Oncogene. 32:70–77. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Chen L, Yang L, Qiao F, Hu X, Li S, Yao L, Yang XL and Shao ZM: High levels of nucleolar spindle-associated protein and reduced levels of BRCA1 expression predict poor prognosis in triple-negative breast cancer. PLoS One. 10:e01405722015. View Article : Google Scholar : PubMed/NCBI

29 

Giussani M, Merlino G, Cappelletti V, Tagliabue E and Daidone MG: Tumor-extracellular matrix interactions: Identification of tools associated with breast cancer progression. Semin Cancer Biol. 35:3–10. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Emery LA, Tripathi AC, King C, Kavanah M, Mendez J, Stone MD, de las Morenas A, Sebastiani P and Rosenberg CL: Early dysregulation of cell adhesion and extracellular matrix pathways in breast cancer progression. Am J Pathol. 175:1292–1302. 2009. View Article : Google Scholar : PubMed/NCBI

31 

He L, Wang D, Wei N and Guo Z: Integrated bioinformatics approach reveals crosstalk between tumor stroma and peripheral blood mononuclear cells in breast cancer. Asian Pac J Cancer Prev. 17:1003–1008. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

May 2019
Volume 17 Issue 5

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Yang, H., Zhou, L., Chen, J., Su, J., Shen, W., Liu, B. ... Qian, J. (2019). A four‑gene signature for prognosis in breast cancer patients with hypermethylated IL15RA. Oncology Letters, 17, 4245-4254. https://doi.org/10.3892/ol.2019.10137
MLA
Yang, H., Zhou, L., Chen, J., Su, J., Shen, W., Liu, B., Zhou, J., Yu, S., Qian, J."A four‑gene signature for prognosis in breast cancer patients with hypermethylated IL15RA". Oncology Letters 17.5 (2019): 4245-4254.
Chicago
Yang, H., Zhou, L., Chen, J., Su, J., Shen, W., Liu, B., Zhou, J., Yu, S., Qian, J."A four‑gene signature for prognosis in breast cancer patients with hypermethylated IL15RA". Oncology Letters 17, no. 5 (2019): 4245-4254. https://doi.org/10.3892/ol.2019.10137