Identification of responders/non-responders to 5-fluorouracil based on individual 50% inhibitory area under the concentration curve of 5-fluorouracil obtained with collagen gel droplet-embedded culture-drug sensitivity test in colorectal cancer

TAKUMI OCHIAI1, KAZUHIKO NISHIMURA1, TOMOO WATANABE1, MASAYUKI KITAJIMA1, AKINORI NAKATANI1, TAKASHI MARUSASA1, TADASUKE HASHIGUCHI1, TAKAYUKI UCHIDA1, NAOKI SAKUYAMA1, TSUYOSHI SATO1, KENNJI KISHINE1, SHUNJI FUTAGAWA1 and ISAO NAGAOKA2

1Department of Surgery, Tobu Chiiki Hospital, Tokyo Metropolitan Health and Medical Treatment Corporation; 2Department of Host Defense and Biochemical Research, Juntendo University School of Medicine, Tokyo, Japan

Received October 5, 2010; Accepted December 22, 2010

DO: 10.3892/ol.2011.251

Abstract. We previously reported the 5-fluorouracil (5-FU) sensitivity of cancer cells obtained from colorectal cancer (CRC) patients using the collagen gel droplet-embedded culture-drug sensitivity test (CD-DST). Multiple drug concentrations and contact durations, and the area under the concentration curve (AUC) and growth inhibition rate (IR) were combined, resulting in the AUC-IR curve, which was approximated to the logarithmic curve. Moreover, the individualized AUCIR50, the AUC value which gives 50% growth inhibition, was calculated using the AUC-IR curve. This study aimed to identify responders/non-responders to 5-FU based on the individual AUCIR50 obtained with CD-DST in order to establish individualized chemotherapy for CRC patients. The cumulative distribution of the individual AUCIR50 in CRC patients was evaluated. The cumulative distribution of the individual AUCIR50 was regressed over the sigmoid curve (logarithmic scale). The approximate expression was almost exactly y=ab^exp(-cx) (a=0.9739, b=1.7096E-21, c=0.8990, the sum of square residuals, 0.0279). In the 80 cases examined, no notable change was observed in the regression curve when the number of patients increased. A standard curve was obtained describing responders to 5-FU among all CRC patients. From this standard curve, we ascertained that non-responders accounted for approximately 5% of all patients. Moreover, we were able to classify responders into good or intermediate responders to 5-FU. The standard curve describing response to 5-FU in CRC patients offers a useful tool in the establishment of individualized chemotherapy.

Introduction

Over the past decade, individualized therapeutic strategies have been developed in the treatment of colorectal cancer (CRC). These strategies utilize a number of novel, molecularly targeted agents, yielding an improvement in survival (1-12). Despite an increase in our knowledge of molecular pathways, 40-50% of metastatic CRC patients continue to experience no beneficial effect from such new strategies. This effect may be due to the numerous steps involved in the pharmacokinetics of anticancer drugs and various in vivo factors affecting sensitivity to anticancer drugs (13). Testing the chemosensitivity of cancer cells to a particular drug is therefore crucial in establishing which drug is appropriate.

As a key drug in the treatment of CRC, it is crucial to identify responders/non-responders to 5-fluorouracil (5-FU). Previously, we investigated the sensitivity of cancer cells to 5-FU in CRC patients using the collagen gel droplet-embedded culture-drug sensitivity test (CD-DST). Multiple drug concentrations and contact durations, and the area under the concentration curve (AUC) and growth inhibition rate (IR) were combined to produce an AUC-IR curve, which was approximated to the logarithmic curve. Moreover, the individualized AUCIR50 and AUC value, which gives 50% growth inhibition, were calculated using the AUC-IR curve (14,15). This study aimed to identify responders/non-responders to 5-FU based on
the individual AUC\textsubscript{IR50} obtained with the CD-DST in order to establish individualized chemotherapy for CRC patients.

Materials and methods

Patients. Surgically resected specimens of primary tumors were obtained from 101 colorectal cancer patients between January 2002 and April 2010. Resection was performed without pre-operative chemotherapy. Informed consent for measuring drug sensitivity was obtained from the patients.

Methods. CD-DST was applied to tumor tissue excised from the primary surgical specimens. The specimen was washed five times with 50 ml saline solution, followed by five times with 50 ml antibiotic fluid containing 1.0 mg/ml piperacillin and 0.5 mg/ml kanamycin. The transport bottle contained 1.0 mg/ml piperacillin, 0.5 mg/ml kanamycin and 2.5 µg/ml amphotericin B. Tumor sensitivity to 5-FU was evaluated using CD-DST, performed as described by Kobayashi et al (16). Tissue (1 g) was treated with dispersion enzyme cocktail (EZ; Kurabo Industries Ltd., Japan) for 2 h. Dispersed cell suspensions were inoculated into pre-culture media in collagen-coated flasks overnight. Viable tumor cells were then recovered by 0.05% collagenase treatment. Recovered cells were embedded in 30-µl collagen gel droplets. Embedded cells were cultivated in culture media containing 5-FU at 0.2 µg/ml for 3 h, 1 µg/ml for 3 h, 10 µg/ml for 3 h, 0.2 µg/ml for 24 h, 1 µg/ml for 24 h, 10 µg/ml for 24 h, 0.2 µg/ml for 120 h, 1 µg/ml for 120 h or 10 µg/ml for 120 h. The 5-FU-containing media were removed and the cells were cultured for 7 days in serum-free culture media (PCM-2; Kurabo Industries Ltd.) to prevent growth of fibroblasts. Viable cells were stained with neutral red solution and counted by the imaging colorimetric quantification method. The surviving cell number ratio between the drug-treated and control groups was calculated. Where a growth rate in excess of 0.8 was observed or ≥4 culture conditions were recorded, the case was considered successful.

Following conversion of the drug concentrations and contact time to AUC, the AUC-IR curve was plotted against the growth inhibition rate and the individual AUC\textsubscript{IR50}, i.e., the AUC value that indicates 50% growth inhibition, was calculated from the AUC-IR regression curve. The approximate expression of the cumulative distribution of the individual AUC\textsubscript{IR50} was obtained using the non-linear least squares method. The transition of the approximate expression with an increase in the number of patients was evaluated.

Statistical analysis. Correlations between the cumulative distribution of the individual AUC\textsubscript{IR50} and the approximate expression of the cumulative distribution of the individual AUC\textsubscript{IR50} were analyzed by linear regression analysis. The statistical tests were carried out using the SPSS package (version II for Windows). P<0.05 was considered to be statistically significant.

Results

Table I shows the patient characteristics of the 101 patients enrolled in this study. The AUC-IR curve of a representative patient is shown in Fig. 1.

<table>
<thead>
<tr>
<th>No. of patients</th>
<th>101</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age, years (range)</td>
<td>65.2 (30-85)</td>
</tr>
<tr>
<td>Gender (male/female)</td>
<td>45/56</td>
</tr>
<tr>
<td>Histological type</td>
<td></td>
</tr>
<tr>
<td>Well-differentiated carcinoma</td>
<td>15</td>
</tr>
<tr>
<td>Moderately differentiated carcinoma</td>
<td>73</td>
</tr>
<tr>
<td>Poorly differentiated carcinoma</td>
<td>4</td>
</tr>
<tr>
<td>Mucinous carcinoma</td>
<td>9</td>
</tr>
<tr>
<td>Dukes’ stage (A/B/C/D)</td>
<td>8/42/33/18</td>
</tr>
<tr>
<td>Colon/rectum</td>
<td>80/21</td>
</tr>
</tbody>
</table>

Table I. Patient characteristics.

The approximate expression and correlation coefficients were $y=10.767\ln(x) + 0.8243$, ($R^2=0.9359$) for AUC and 96.3 µg x h/ml [$y=10.767\ln(x) + 0.8243$, $R^2=0.9359$] for the individual AUC\textsubscript{IR50} value calculated from the regression curve in this patient. The curve between the AUC and the growth IR approximated a logarithmic curve ($R^2=0.655-0.999$). The individual AUC\textsubscript{IR50} value was calculated from the AUC-IR curve (AUC\textsubscript{IR50} = 8.1 µg - 98.8 g x h/ml) for all 101 patients.

The cumulative distribution of the individual AUC\textsubscript{IR50} in the 101 patients is shown in Fig. 2. The cumulative distribution of the individual AUC\textsubscript{IR50} was regressed over the sigmoid curve (logistic scale). The approximate expression was almost exactly $y=ab^\exp(-cx)$ ($a=0.9739$, $b=1.7096E-21$, $c=0.8990$ and the sum of square residuals, 0.0279).
The correlation between the measured and the calculated cumulative distribution values of the individual AUC\(_{\text{IR50}}\) from the approximate expression is shown in Fig. 3. The approximate expression and correlation coefficients were \(y=0.9961x + 0.2081\) \((R^2=0.9967)\) using linear regression analysis. Linear regression with an increase in the number of patients is shown in Table II.

The transition of the coefficients (a, b and c) and the sum of the square residuals in the approximate expression \(y=ab^\exp(-cx)\) with an increase in the number of patients are shown in Figs. 4, 5, 6 and 7, respectively. In the 80 cases examined, no notable change was observed in the regression curve with an increase in the number of patients.

Discussion

Advances in the cytotoxic treatment of CRC have been noted over the past decade. Moreover, the introduction of novel molecularly targeted agents has yielded improvements in progression-free and overall survival in metastatic CRC patients (1-12). Despite these improvements in the treatment of CRC and increased knowledge regarding the molecular pathways involved, approximately half of all CRC patients have yet to receive any benefit from such progress, and selecting patients likely to prove responsive to a particular drug remains a challenge. Although a number of novel molecular predictive and prognostic markers have been identified (13), more remain to be determined, as numerous steps are involved in the pharmacokinetics of anticancer drugs, especially with regard to absorption, metabolism and excretion. Numerous *in vivo*
factors affect sensitivity to an anticancer drug, including activation enzymes, degradation enzymes, membrane transport proteins, DNA repair enzymes and the target protein in the cancer cell. These factors are regulated by individual genes. In other words, the behavior of the cancer is affected by the body as a whole. Thus, tumor and cell function, enzymatic activity, amount of enzymes, mRNA expression and, gene polymorphisms and mutations are involved in affecting the occurrence of cancer. Therefore, testing for chemosensitivity to a particular drug is crucial in distinguishing potential responders from non-responders.

The majority of chemotherapy regimens for CRC incorporate 5-FU, both in an adjuvant and palliative setting. 5-FU therefore is the key drug used in the treatment of CRC. The single-agent response rate to 5-FU varies between 20 and 25% in patients with advanced-stage CRC (17). No other anticancer agent surpasses 5-FU in terms of single-agent response rate. Therefore, assessing its antitumor effect in each individual CRC patient is crucial. Previously, we investigated cancer cell sensitivity to 5-FU in CRC patients using CD-DEST under multiple drug concentrations and contact durations. Moreover, AUC and IR were combined to produce an AUC-IR curve, which was approximated to the logarithmic curve (14). We also reported that the growth inhibition rate calculated from the AUC-IR curve and the actual growth inhibition rate at an AUC of 48 μg x h/ml were identical. Based on these results, we proposed that the in vitro antitumor effect of 5-FU was dependent on the AUC in colorectal cancer, and that the AUC-IR curve was reliable (15). Moreover, we calculated the individualized AUC_{IR50}, the AUC value which gives 50% growth inhibition, using the AUC-IR curve (18).

In this study, we evaluated the distribution of the individual AUC_{IR50} in order to establish individualized chemotherapy in CRC patients, focusing, in particular, on the transition of the approximate expression with an increase in the number of patients. The cumulative distribution of the individual AUC_{IR50} in 101 patients was regressed over the sigmoid curve (logarithmic scale). The approximate expression was almost exactly y=a+b*exp(-cx) (a=0.9739, b=1.7096E-21, c=0.8990 and the sum of square residuals, 0.0279). The approximate expression and correlation coefficients between the measured and calculated cumulative distribution values of the individual AUC_{IR50} were y=0.9961x + 0.2081 (R²=0.9967) using linear regression analysis. No notable change was observed in the transition of the coefficients (a, b and c) or the sum of the square residuals in the approximate expression [y=a+b*exp(-cx)] with an increase in the number of patients. In particular, in over 80 cases the approximate expression [y=a+b*exp(-cx)] remained almost identical. These results indicate that the regression curve may serve as the standard curve for describing responders to 5-FU among CRC patients. From this standard curve, we were able to ascertain that non-responders accounted for approximately 5% of all patients and, thus, determine the responders.

In individualized 5-FU-based chemotherapy for CRC, it is crucial to identify the non-responders and classify responders as good or intermediate by applying the standard curve to each patient. In palliative chemotherapy, irinotecan molecularly targeted drugs or irinotecan with molecularly targeted drugs are recommended for non-responders to 5-FU, whereas oxaliplatin plus 5-FU and leucovorin (FOLFOX) ± molecu-

