The emerging role of CXCL10 in cancer (Review)

  • Authors:
    • Mingli Liu
    • Shanchun Guo
    • Jonathan K. Stiles
  • View Affiliations

  • Published online on: May 9, 2011     https://doi.org/10.3892/ol.2011.300
  • Pages: 583-589
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The chemokine interferon-γ inducible protein 10 kDa (CXCL10) is a member of the CXC chemokine family which binds to the CXCR3 receptor to exert its biological effects. CXCL10 is involved in chemotaxis, induction of apoptosis, regulation of cell growth and mediation of angiostatic effects. CXCL10 is associated with a variety of human diseases including infectious diseases, chronic inflammation, immune dysfuntion, tumor development, metastasis and dissemination. More importantly, CXCL10 has been identified as a major biological marker mediating disease severity and may be utilized as a prognostic indicator for various diseases. In this review, we focus on current research elucidating the emerging role of CXCL10 in the pathogenesis of cancer. Understanding the role of CXCL10 in disease initiation and progression may provide the basis for developing CXCL10 as a potential biomarker and therapeutic target for related human malignancies.

References

1 

Moser B and Loetscher P: Lymphocyte traffic control by chemokines. Nat Immunol. 2:123–128. 2001. View Article : Google Scholar : PubMed/NCBI

2 

Lee EY, Lee ZH and Song YW: CXCL10 and autoimmune diseases. Autoimmun Rev. 8:379–383. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Swaminathan GJ, Holloway DE, Colvin RA, et al: Crystal structures of oligomeric forms of the IP-10/CXCL10 chemokine. Structure. 11:521–532. 2003. View Article : Google Scholar : PubMed/NCBI

4 

Zlotnik A and Yoshie O: Chemokines: a new classification system and their role in immunity. Immunity. 12:121–127. 2000. View Article : Google Scholar : PubMed/NCBI

5 

Loetscher P and Clark-Lewis I: Agonistic and antagonistic activities of chemokines. J Leukoc Biol. 69:881–884. 2001.PubMed/NCBI

6 

Loetscher M, Gerber B, Loetscher P, et al: Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. J Exp Med. 184:963–969. 1996. View Article : Google Scholar : PubMed/NCBI

7 

Sallusto F, Lenig D, Mackay CR and Lanzavecchia A: Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med. 187:875–883. 1998. View Article : Google Scholar : PubMed/NCBI

8 

Loetscher M, Loetscher P, Brass N, Meese E and Moser B: Lymphocyte-specific chemokine receptor CXCR3: regulation, chemokine binding and gene localization. Eur J Immunol. 28:3696–3705. 1998. View Article : Google Scholar : PubMed/NCBI

9 

Qin S, Rottman JB, Myers P, et al: The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest. 101:746–754. 1998. View Article : Google Scholar : PubMed/NCBI

10 

Cole KE, Strick CA, Paradis TJ, et al: Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med. 187:2009–2021. 1998. View Article : Google Scholar

11 

Clark-Lewis I, Mattioli I, Gong JH and Loetscher P: Structure-function relationship between the human chemokine receptor CXCR3 and its ligands. J Biol Chem. 278:289–295. 2003. View Article : Google Scholar : PubMed/NCBI

12 

Dyer KD, Percopo CM, Fischer ER, Gabryszewski SJ and Rosenberg HF: Pneumoviruses infect eosinophils and elicit MyD88-dependent release of chemoattractant cytokines and interleukin-6. Blood. 114:2649–2656. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Luster AD and Ravetch JV: Biochemical characterization of a gamma interferon-inducible cytokine (IP-10). J Exp Med. 166:1084–1097. 1987. View Article : Google Scholar : PubMed/NCBI

14 

Lo BK, Yu M, Zloty D, Cowan B, Shapiro J and McElwee KJ: CXCR3/ligands are significantly involved in the tumorigenesis of basal cell carcinomas. Am J Pathol. 176:2435–2446. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Bonecchi R, Bianchi G, Bordignon PP, et al: Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med. 187:129–134. 1998. View Article : Google Scholar : PubMed/NCBI

16 

Hancock WW, Gao W, Csizmadia V, Faia KL, Shemmeri N and Luster AD: Donor-derived IP-10 initiates development of acute allograft rejection. J Exp Med. 193:975–980. 2001. View Article : Google Scholar : PubMed/NCBI

17 

Khan IA, MacLean JA, Lee FS, et al: IP-10 is critical for effector T cell trafficking and host survival in Toxoplasma gondii infection. Immunity. 12:483–494. 2000. View Article : Google Scholar : PubMed/NCBI

18 

Kanda N, Shimizu T, Tada Y and Watanabe S: IL-18 enhances IFN-gamma-induced production of CXCL9, CXCL10, and CXCL11 in human keratinocytes. Eur J Immunol. 37:338–350. 2007. View Article : Google Scholar : PubMed/NCBI

19 

Kanda N and Watanabe S: Prolactin enhances interferon-gamma induced production of CXC ligand 9 (CXCL9), CXCL10, and CXCL11 in human keratinocytes. Endocrinology. 148:2317–2325. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Mee JB, Johnson CM, Morar N, Burslem F and Groves RW: The psoriatic transcriptome closely resembles that induced by interleukin-1 in cultured keratinocytes: dominance of innate immune responses in psoriasis. Am J Pathol. 171:32–42. 2007. View Article : Google Scholar

21 

Angiolillo AL, Sgadari C, Taub DD, et al: Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med. 182:155–162. 1995. View Article : Google Scholar : PubMed/NCBI

22 

Persano L, Crescenzi M and Indraccolo S: Anti-angiogenic gene therapy of cancer: current status and future prospects. Mol Aspects Med. 28:87–114. 2007. View Article : Google Scholar : PubMed/NCBI

23 

Belperio JA, Keane MP, Arenberg DA, et al: CXC chemokines in angiogenesis. J Leukoc Biol. 68:1–8. 2000.

24 

Monteagudo C, Martin JM, Jorda E and Llombart-Bosch A: CXCR3 chemokine receptor immunoreactivity in primary cutaneous malignant melanoma: correlation with clinicopathological prognostic factors. J Clin Pathol. 60:596–599. 2007. View Article : Google Scholar

25 

Furuya M, Suyama T, Usui H, et al: Up-regulation of CXC chemokines and their receptors: implications for proinflammatory microenvironments of ovarian carcinomas and endometriosis. Hum Pathol. 38:1676–1687. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Pellegrino A, Antonaci F, Russo F, et al: CXCR3-binding chemokines in multiple myeloma. Cancer Lett. 207:221–227. 2004. View Article : Google Scholar : PubMed/NCBI

27 

Jones D, Benjamin RJ, Shahsafaei A and Dorfman DM: The chemokine receptor CXCR3 is expressed in a subset of B-cell lymphomas and is a marker of B-cell chronic lymphocytic leukemia. Blood. 95:627–632. 2000.PubMed/NCBI

28 

Farina C, Aloisi F and Meinl E: Astrocytes are active players in cerebral innate immunity. Trends Immunol. 28:138–145. 2007. View Article : Google Scholar : PubMed/NCBI

29 

Vinet J, de Jong EK, Boddeke HW, et al: Expression of CXCL10 in cultured cortical neurons. J Neurochem. 112:703–714. 2009. View Article : Google Scholar

30 

Van Weering HR, Boddeke HW, Vinet J, et al: CXCL10/CXCR3 signaling in glia cells differentially affects NMDA-induced cell death in CA and DG neurons of the mouse hippocampus. Hippocampus. 21:220–232. 2011.PubMed/NCBI

31 

Luster AD, Unkeless JC and Ravetch JV: Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature. 315:672–676. 1985. View Article : Google Scholar : PubMed/NCBI

32 

Luster AD, Jhanwar SC, Chaganti RS, Kersey JH and Ravetch JV: Interferon-inducible gene maps to a chromosomal band associated with a (4;11) translocation in acute leukemia cells. Proc Natl Acad Sci USA. 84:2868–2871. 1987. View Article : Google Scholar : PubMed/NCBI

33 

Booth V, Keizer DW, Kamphuis MB, Clark-Lewis I and Sykes BD: The CXCR3 binding chemokine IP-10/CXCL10: structure and receptor interactions. Biochemistry. 41:10418–10425. 2002. View Article : Google Scholar : PubMed/NCBI

34 

Campanella GS, Grimm J, Manice LA, et al: Oligomerization of CXCL10 is necessary for endothelial cell presentation and in vivo activity. J Immunol. 177:6991–6998. 2006. View Article : Google Scholar : PubMed/NCBI

35 

Jabeen T, Leonard P, Jamaluddin H and Acharya KR: Structure of mouse IP-10, a chemokine. Acta Crystallogr D Biol Crystallogr. 64:611–619. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Colvin RA, Campanella GS, Sun J and Luster AD: Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and CXCL11 function. J Biol Chem. 279:30219–30227. 2004. View Article : Google Scholar : PubMed/NCBI

37 

Enderlin M, Kleinmann EV, Struyf S, et al: TNF-alpha and the IFN-gamma-inducible protein 10 (IP-10/CXCL-10) delivered by parvoviral vectors act in synergy to induce antitumor effects in mouse glioblastoma. Cancer Gene Ther. 16:149–160. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Liu L, Callahan MK, Huang D and Ransohoff RM: Chemokine receptor CXCR3: an unexpected enigma. Curr Top Dev Biol. 68:149–181. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Neville LF, Mathiak G and Bagasra O: The immunobiology of interferon-gamma inducible protein 10 kDa (IP-10): a novel, pleiotropic member of the C-X-C chemokine superfamily. Cytokine Growth Factor Rev. 8:207–219. 1997. View Article : Google Scholar : PubMed/NCBI

40 

Rice D and Barone S Jr: Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 108(Suppl 3): 511–533. 2000. View Article : Google Scholar : PubMed/NCBI

41 

Yang LL, Ping C, Luo S, et al: CXCL10 gene therapy efficiently inhibited the growth of cervical carcinoma based on the antiangiogenic and antiviral activity. Biotechnol Appl Biochem. Mar 3–2009.(Epub ahead of print).

42 

Aksoy MO, Yang Y, Ji R, et al: CXCR3 surface expression in human airway epithelial cells: cell cycle dependence and effect on cell proliferation. Am J Physiol Lung Cell Mol Physiol. 290:L909–L918. 2006. View Article : Google Scholar : PubMed/NCBI

43 

Ji R, Lee CM, Gonzales LW, et al: Human type II pneumocyte chemotactic responses to CXCR3 activation are mediated by splice variant A. Am J Physiol Lung Cell Mol Physiol. 294:L1187–L1196. 2008. View Article : Google Scholar : PubMed/NCBI

44 

Maru SV, Holloway KA, Flynn G, et al: Chemokine production and chemokine receptor expression by human glioma cells: role of CXCL10 in tumour cell proliferation. J Neuroimmunol. 199:35–45. 2008. View Article : Google Scholar : PubMed/NCBI

45 

Shen Q, Zhang R and Bhat NR: MAP kinase regulation of IP10/CXCL10 chemokine gene expression in microglial cells. Brain Res. 1086:9–16. 2006. View Article : Google Scholar : PubMed/NCBI

46 

Datta D, Flaxenburg JA, Laxmanan S, et al: Ras-induced modulation of CXCL10 and its receptor splice variant CXCR3-B in MDA-MB-435 and MCF-7 cells: relevance for the development of human breast cancer. Cancer Res. 66:9509–9518. 2006. View Article : Google Scholar : PubMed/NCBI

47 

Giuliani N, Bonomini S, Romagnani P, et al: CXCR3 and its binding chemokines in myeloma cells: expression of isoforms and potential relationships with myeloma cell proliferation and survival. Haematologica. 91:1489–1497. 2006.PubMed/NCBI

48 

Kim S, Bakre M, Yin H and Varner JA: Inhibition of endothelial cell survival and angiogenesis by protein kinase A. J Clin Invest. 110:933–941. 2002. View Article : Google Scholar : PubMed/NCBI

49 

Sato E, Fujimoto J and Tamaya T: Expression of interferon-gamma-inducible protein 10 related to angiogenesis in uterine endometrial cancers. Oncology. 73:246–251. 2007. View Article : Google Scholar : PubMed/NCBI

50 

Aronica SM, Raiber L, Hanzly M and Kisela C: Antitumor/antiestrogenic effect of the chemokine interferon inducible protein 10 (IP-10) involves suppression of VEGF expression in mammary tissue. J Interferon Cytokine Res. 29:83–92. 2009. View Article : Google Scholar

51 

Aronica SM, Fanti P, Kaminskaya K, et al: Estrogen disrupts chemokine-mediated chemokine release from mammary cells: implications for the interplay between estrogen and IP-10 in the regulation of mammary tumor formation. Breast Cancer Res Treat. 84:235–245. 2004. View Article : Google Scholar

52 

Jiang Z, Xu Y and Cai S: CXCL10 expression and prognostic significance in stage II and III colorectal cancer. Mol Biol Rep. 37:3029–3036. 2010. View Article : Google Scholar : PubMed/NCBI

53 

Romagnani P, Lasagni L, Annunziato F, Serio M and Romagnani S: CXC chemokines: the regulatory link between inflammation and angiogenesis. Trends Immunol. 25:201–209. 2004. View Article : Google Scholar : PubMed/NCBI

54 

Shahabuddin S, Ji R, Wang P, et al: CXCR3 chemokine receptor-induced chemotaxis in human airway epithelial cells: role of p38 MAPK and PI3K signaling pathways. Am J Physiol Cell Physiol. 291:C34–C39. 2006. View Article : Google Scholar : PubMed/NCBI

55 

Han C, Fu J, Liu Z, Huang H, Luo L and Yin Z: Dipyrithione inhibits IFN-gamma-induced JAK/STAT1 signaling pathway activation and IP-10/CXCL10 expression in RAW264.7 cells. Inflamm Res. 59:809–816. 2010. View Article : Google Scholar : PubMed/NCBI

56 

Nakamichi K, Inoue S, Takasaki T, Morimoto K and Kurane I: Rabies virus stimulates nitric oxide production and CXC chemokine ligand 10 expression in macrophages through activation of extracellular signal-regulated kinases 1 and 2. J Virol. 78:9376–9388. 2004. View Article : Google Scholar

57 

Nakamichi K, Saiki M, Sawada M, et al: Rabies virus-induced activation of mitogen-activated protein kinase and NF-kappaB signaling pathways regulates expression of CXC and CC chemokine ligands in microglia. J Virol. 79:11801–11812. 2005. View Article : Google Scholar

58 

Fujita M, Zhu X, Ueda R, et al: Effective immunotherapy against murine gliomas using type 1 polarizing dendritic cells – significant roles of CXCL10. Cancer Res. 69:1587–1595. 2009.PubMed/NCBI

59 

Lu XL, Jiang XB, Liu RE and Zhang SM: The enhanced antiangiogenic and antitumor effects of combining flk1-based DNA vaccine and IP-10. Vaccine. 26:5352–5357. 2008. View Article : Google Scholar : PubMed/NCBI

60 

Jiang XB, Lu XL, Hu P and Liu RE: Improved therapeutic efficacy using vaccination with glioma lysate-pulsed dendritic cells combined with IP-10 in murine glioma. Vaccine. 27:6210–6216. 2009. View Article : Google Scholar : PubMed/NCBI

61 

Okada H: Brain tumor immunotherapy with type-1 polarizing strategies. Ann NY Acad Sci. 1174:18–23. 2009. View Article : Google Scholar : PubMed/NCBI

62 

Kang TH, Bae HC, Kim SH, et al: Modification of dendritic cells with interferon-gamma-inducible protein-10 gene to enhance vaccine potency. J Gene Med. 11:889–898. 2009. View Article : Google Scholar : PubMed/NCBI

63 

Mei K, Wang L, Tian L, Yu J, Zhang Z and Wei Y: Antitumor efficacy of combination of interferon-gamma-inducible protein 10 gene with gemcitabine, a study in murine model. J Exp Clin Cancer Res. 27:632008. View Article : Google Scholar : PubMed/NCBI

64 

Balkwill F and Mantovani A: Inflammation and cancer: back to Virchow? Lancet. 357:539–545. 2001. View Article : Google Scholar : PubMed/NCBI

65 

Oppenheim JJ, Murphy WJ, Chertox O, Schirrmacher V and Wang JM: Prospects for cytokine and chemokine biotherapy. Clin Cancer Res. 3:2682–2686. 1997.PubMed/NCBI

66 

Moriai S, Takahara M, Ogino T, et al: Production of interferon-{gamma}-inducible protein-10 and its role as an autocrine invasion factor in nasal natural killer/T-cell lymphoma cells. Clin Cancer Res. 15:6771–6779. 2009.

67 

Kawada K, Hosogi H, Sonoshita M, et al: Chemokine receptor CXCR3 promotes colon cancer metastasis to lymph nodes. Oncogene. 26:4679–4688. 2007. View Article : Google Scholar : PubMed/NCBI

68 

Sanchez-Carbayo M, Socci ND, Lozano J, Saint F and Cordon-Cardo C: Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. J Clin Oncol. 24:778–789. 2006. View Article : Google Scholar : PubMed/NCBI

69 

Sun L, Hui AM, Su Q, et al: Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell. 9:287–300. 2006. View Article : Google Scholar : PubMed/NCBI

70 

Lee J, Kotliarova S, Kotliarov Y, et al: Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 9:391–403. 2006. View Article : Google Scholar : PubMed/NCBI

71 

Richardson AL, Wang ZC, De Nicolo A, et al: X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell. 9:121–132. 2006. View Article : Google Scholar : PubMed/NCBI

72 

Karnoub AE, Dash AB, Vo AP, et al: Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 449:557–563. 2007. View Article : Google Scholar : PubMed/NCBI

73 

Pyeon D, Newton MA, Lambert PF, et al: Fundamental differences in cell cycle deregulation in human papillomavirus-positive and human papillomavirus-negative head/neck and cervical cancers. Cancer Res. 67:4605–4619. 2007. View Article : Google Scholar

74 

Ki DH, Jeung HC, Park CH, et al: Whole genome analysis for liver metastasis gene signatures in colorectal cancer. Int J Cancer. 121:2005–2012. 2007. View Article : Google Scholar : PubMed/NCBI

75 

Ginos MA, Page GP, Michalowicz BS, et al: Identification of a gene expression signature associated with recurrent disease in squamous cell carcinoma of the head and neck. Cancer Res. 64:55–63. 2004. View Article : Google Scholar : PubMed/NCBI

76 

Talbot SG, Estilo C, Maghami E, et al: Gene expression profiling allows distinction between primary and metastatic squamous cell carcinomas in the lung. Cancer Res. 65:3063–3071. 2005.PubMed/NCBI

77 

Yusenko MV, Kuiper RP, Boethe T, Ljungberg B, van Kessel AG and Kovacs G: High-resolution DNA copy number and gene expression analyses distinguish chromophobe renal cell carcinomas and renal oncocytomas. BMC Cancer. 9:1522009. View Article : Google Scholar : PubMed/NCBI

78 

Gumz ML, Zou H, Kreinest PA, et al: Secreted frizzled-related protein 1 loss contributes to tumor phenotype of clear cell renal cell carcinoma. Clin Cancer Res. 13:4740–4749. 2007. View Article : Google Scholar : PubMed/NCBI

79 

Andersson A, Ritz C, Lindgren D, et al: Microarray-based classification of a consecutive series of 121 childhood acute leukemias: prediction of leukemic and genetic subtype as well as of minimal residual disease status. Leukemia. 21:1198–1203. 2007. View Article : Google Scholar

80 

Wurmbach E, Chen YB, Khitrov G, et al: Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology. 45:938–947. 2007. View Article : Google Scholar : PubMed/NCBI

81 

Rosenwald A, Alizadeh AA, Widhopf G, et al: Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med. 194:1639–1647. 2001. View Article : Google Scholar : PubMed/NCBI

82 

Rosenwald A, Wright G, Chan WC, et al: The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 346:1937–1947. 2002. View Article : Google Scholar : PubMed/NCBI

83 

Storz MN, van de Rijn M, Kim YH, Mraz-Gernhard S, Hoppe RT and Kohler S: Gene expression profiles of cutaneous B cell lymphoma. J Invest Dermatol. 120:865–870. 2003. View Article : Google Scholar : PubMed/NCBI

84 

Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R and Califano A: Reverse engineering of regulatory networks in human B cells. Nat Genet. 37:382–390. 2005. View Article : Google Scholar : PubMed/NCBI

85 

Haqq C, Nosrati M, Sudilovsky D, et al: The gene expression signatures of melanoma progression. Proc Natl Acad Sci USA. 102:6092–6097. 2005. View Article : Google Scholar : PubMed/NCBI

86 

Skotheim RI, Lind GE, Monni O, et al: Differentiation of human embryonal carcinomas in vitro and in vivo reveals expression profiles relevant to normal development. Cancer Res. 65:5588–5598. 2005. View Article : Google Scholar : PubMed/NCBI

87 

Morrison C, Farrar W, Kneile J, et al: Molecular classification of parathyroid neoplasia by gene expression profiling. Am J Pathol. 165:565–576. 2004. View Article : Google Scholar : PubMed/NCBI

88 

Detwiller KY, Fernando NT, Segal NH, Ryeom SW, D’Amore PA and Yoon SS: Analysis of hypoxia-related gene expression in sarcomas and effect of hypoxia on RNA interference of vascular endothelial cell growth factor A. Cancer Res. 65:5881–5889. 2005. View Article : Google Scholar : PubMed/NCBI

89 

Korkola JE, Houldsworth J, Chadalavada RS, et al: Down-regulation of stem cell genes, including those in a 200-kb gene cluster at 12p13.31, is associated with in vivo differentiation of human male germ cell tumors. Cancer Res. 66:820–827. 2006. View Article : Google Scholar : PubMed/NCBI

90 

Beroukhim R, Brunet JP, Di Napoli A, et al: Patterns of gene expression and copy-number alterations in von-hippel lindau disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res. 69:4674–4681. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

July 2011
Volume 2 Issue 4

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liu, M., Guo, S., & Stiles, J.K. (2011). The emerging role of CXCL10 in cancer (Review). Oncology Letters, 2, 583-589. https://doi.org/10.3892/ol.2011.300
MLA
Liu, M., Guo, S., Stiles, J. K."The emerging role of CXCL10 in cancer (Review)". Oncology Letters 2.4 (2011): 583-589.
Chicago
Liu, M., Guo, S., Stiles, J. K."The emerging role of CXCL10 in cancer (Review)". Oncology Letters 2, no. 4 (2011): 583-589. https://doi.org/10.3892/ol.2011.300