A microRNA expression signature characterizing the properties of tumor-initiating cells for breast cancer

Lixin Wang1, Daqiang Zhang1,2, Changwen Zhang1, Shuping Zhang1, Zhe Wang1, Chen Qu1 and Sijin Liu1

1State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085;
2Weifang Medical College, Wendeng Central Hospital, Weihai 264400, P.R. China

Received March 17, 2011; Accepted July 20, 2011

DOI: 10.3892/ol.2011.431

Abstract. microRNAs (miRNAs) are involved in controlling tumor behaviors either as oncogenes or tumor suppressors. To elucidate the role of miRNAs in the regulation of tumor initiation, we delineated the microRNA expression signature characterizing the properties of tumor-initiating cells for breast cancer. A group of miRNAs were differentially expressed in MDA-MB-231 and SUM1315 cells (with a high proportion of breast cancer tumor-initiating cells, CD44+CD24+/low subpopulation) compared to MCF-7 cells (only a small proportion of CD44+CD24+/low cells). Among the differentially expressed miRNAs common to MDA-MB-231 and SUM1315, approximately 46% of them are suggested to regulate the 'stemness' of stem cells or progenitor cells. Taken together, these findings suggested that miRNAs contribute to the maintenance of tumor-initiating properties and indicate the potential value of the miRNA expression signature in characterizing or predicting the features (including metastasis) of breast cancer.

Introduction

The leading cause of death in breast cancer (BrCa) patients is not the primary tumor in the breast per se, but metastasis to distant organs. Metastasis accounts for over 90% of deaths in BrCa patients. Millions of cells are released from the primary tumor into the blood circulation daily, but only a small minority of these cells survive and colonize on distant organs. The aim of the present study was to establish the identity of these cells. According to the current cancer stem cell hypothesis, tumors are organized in cell hierarchies composed of tumor-initiating cells (T-ICs), cancer cells and differentiated cells (1). T-ICs with stem cell-like properties, so-called cancer stem cells, are not only the source of the primary tumor; but are also responsible for tumor growth, metastasis and possible recurrence. The CD44+CD24-/low subpopulation in BrCa cells was reported to be enriched in BrCa T-ICs (2). This subpopulation of cells is capable of generating other cellular phenotypes observed in the original tumor and initiating metastases at distant sites from low numbers of cells (2). However, data on the characteristics of BrCa T-ICs and their molecular regulation is currently limited.

microRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression by binding to their target miRNAs. miRNAs regulate tumor development, prognosis and metastasis either as oncogenes or tumor suppressors (3,4). A burgeoning body of evidence showed that miRNAs modulate the properties of embryonic stem (ES) and tissue stem cells in a variety of eukaryotic organisms (5,6). A group of miRNAs may play specialized roles in stem cell regulation, as the Dicer (the enzyme that processes the pre-miRNAs into mature miRNAs) knockout in mice is embryonically lethal (7), and Dicer conditional knockout mouse ES cells grow more slowly than controls and fail to differentiate (8).

In the present study, we investigated the differences in miRNA expression profiling among BrCa cell lines with various proportions of T-ICs and the potential contribution of miRNAs to maintaining the 'stemness' of BrCa T-ICs. The results indicate that a miRNA expression signature may help identify the stemness of T-ICs, and that certain miRNAs may help predict clinical features, such as metastasis, for BrCa.

Materials and methods

Cell lines and cell culture. Human BrCa cell lines MCF-7, SUM149, SUM1315 and MDA-MB-231 were stored in the laboratory. The culture conditions for each cell line were identical to those used in our previous study (9).
Results and Discussion

The prevalence of CD44⁺CD24⁻low cells in BrCa cell lines. To test the hypothesis that the prevalence of T-ICs in a BrCa cell population is associated with the metastatic phenotype of the BrCa cells, the proportion of the CD44⁺CD24⁻low subpopulation of cells was assessed in the tumorigenic/metastatic human BrCa cell lines, SUM1315 and MDA-MB-231, and the tumorigenic/non-metastatic human BrCa cell lines, MCF-7 and SUM149, by FACS analysis. Consistent with a previous report (12), the proportion of this subpopulation is relatively higher in SUM1315 (~60%) and MDA-MB-231 cells (>90%) than in MCF-7 and SUM149 ones (0.05 and 3%, respectively; P<0.001) (Fig. 2A and B). The greater percentage of CD44⁺CD24⁻low cells in SUM1315 and MDA-MB-231 cells corresponds with the highly malignant and metastatic phenotypes of these cell lines (13,14). This finding is also consistent with our previous observation that these cell lines possess enhanced propensity to metastasize (9,13).

miRNA expression signature for tumor-initiating properties in BrCa cells. To investigate the role of miRNAs in the maintenance of BrCa T-ICs, total RNAs from MCF-7, SUM1315 and MDA-MB-231 cells were used as representatives to carry out a microarray analysis of miRNAs. The miRNA expression profiling was documented previously (9). There are 86 and 74 miRNAs that are differentially expressed (fold-change >2 or <2, P<0.05) in MDA-MB-231 and SUM1315 cells compared to MCF-7 cells, respectively, and there are 69 common miRNAs between the 86 and 74 differentially expressed miRNAs (9). Among the 69 miRNAs common to the two cell lines, approximately 46% (n=32) of them have been documented to regulate the stemness of stem/progenitor cells (Table I). The expression changes of miR-22, miR-93 and miR-203 were further validated by qRT-PCR (Fig. 3).

A recent study of miRNA expression of mouse mammary progenitor cells revealed a characteristic group of miRNAs: miR-22 and miR-205 are highly expressed, and miR-93 and let-7 are decreased in progenitor cells compared to differentiated cells (25). In agreement with this study, the miRNA profiling data obtained in the present study showed that miR-22 was induced and miR-93 was reduced in MDA-MB-231 and SUM1315 cells compared to MCF-7 cells (Table I and Fig. 3). This result correlates with the high percentage of BrCa T-ICs in MDA-MB-231 and SUM1315 cells (Fig. 2), miR-21, regulated by REST (RE1-silencing transcription factor; also known as NRSF), specifically suppresses the self-renewal of mouse embryonic stem (ES) cells (23). miR-125a, along with let-7,
Table I. miRNAs associated with stem cell-like properties.

<table>
<thead>
<tr>
<th>miRNA</th>
<th>MDA-MB-231 vs. MCF-7 cells</th>
<th>SUM1315 vs. MCF-7 cells</th>
<th>Function description</th>
<th>Representative target genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-375</td>
<td>↓↓↓↓↓↓</td>
<td>↓↓↓↓↓↓↓↓</td>
<td>Regulates human ES cell differentiation (15)</td>
<td>RLF, OTP, INSM1</td>
</tr>
<tr>
<td>miR-203</td>
<td>↓↓↓↓</td>
<td>↓↓↓↓↓↓↓↓</td>
<td>Tumor suppressor, and regulates stem cell differentiation (16,17)</td>
<td>EDN1</td>
</tr>
<tr>
<td>miR-200c</td>
<td>↓↓↓↓↓</td>
<td>↓↓↓↓</td>
<td>Suppresses the ability of normal mammary stem cells to form mammary ducts and tumors (18)</td>
<td>FN1, ZFHX1B</td>
</tr>
<tr>
<td>miR-7</td>
<td>↓↓</td>
<td>↓↓</td>
<td>Regulates differentiation of germine stem cell lineage (19)</td>
<td>COL2A1, GLI3, KLF4</td>
</tr>
<tr>
<td>miR-98</td>
<td>↓↓</td>
<td>↓↓</td>
<td>Regulates differentiation of bronchoalveolar stem cells (20)</td>
<td>E2F5, HOXA9, SEMA4C</td>
</tr>
<tr>
<td>miR-183</td>
<td>↓</td>
<td>↓↓</td>
<td>Suppresses expression of stem cell factors in cancer and mouse ES cells (21)</td>
<td>ABCA1, LRP6, ITGB1</td>
</tr>
<tr>
<td>miR-26b</td>
<td>↓↓</td>
<td>↓</td>
<td>Significantly decreased in human ES cells (22)</td>
<td>JAG1, NLK, Ezh2</td>
</tr>
<tr>
<td>miR-21</td>
<td>↓</td>
<td>↓↓</td>
<td>Suppresses the self-renewal of ES cells (23)</td>
<td>SATB1, RHOB, PITX2</td>
</tr>
<tr>
<td>miR-148b</td>
<td>↓</td>
<td>↓↓</td>
<td>Regulates human mesenchymal stem cell differentiation (24)</td>
<td>CANX, CSF1, DNMT1</td>
</tr>
<tr>
<td>miR-93</td>
<td>↓</td>
<td>↓</td>
<td>Depleted in mammary progenitor cells (25)</td>
<td>LATS2, TXNIP, ARID4B</td>
</tr>
<tr>
<td>miR-125a</td>
<td>↓</td>
<td>↓</td>
<td>Regulates neural differentiation of stem cells (26)</td>
<td>TAZ, GPC4, PLAGL2</td>
</tr>
<tr>
<td>miR-106b</td>
<td>↓</td>
<td>↓</td>
<td>Altered expression in bronchoalveolar stem cells (27)</td>
<td>ARID4B, BCL2L2, EPFA4</td>
</tr>
<tr>
<td>miR-103</td>
<td>↓</td>
<td>↓</td>
<td>Modulates the self-renewal of mesenchymal stem cells (28)</td>
<td>BTG2, CDK6</td>
</tr>
<tr>
<td>miR-107</td>
<td>↓</td>
<td>↓</td>
<td>Modulates the self-renewal of mesenchymal stem cells (28)</td>
<td>OGT, RBM24, CDK6</td>
</tr>
<tr>
<td>miR-128</td>
<td>↓</td>
<td>↓</td>
<td>Promotes neural stem cell self-renewal (29)</td>
<td>BMI-1</td>
</tr>
<tr>
<td>miR-26a</td>
<td>↓</td>
<td>↓</td>
<td>Modulates the osteogenic differentiation of human adipose tissue-derived stem cells (30)</td>
<td>SMAD1, HOXA5, JAG1</td>
</tr>
<tr>
<td>miR-20a</td>
<td>↑</td>
<td>↑</td>
<td>Differentially expressed in developing mouse embryos, and controls differentiation of stem cells (31)</td>
<td>ABCA1, BCL11B, CD69</td>
</tr>
<tr>
<td>miR-23b</td>
<td>↑</td>
<td>↑</td>
<td>Regulates liver stem cell differentiation by targeting Smads (32)</td>
<td>PKNOX1, SRC1, ZIC1</td>
</tr>
<tr>
<td>miR-23a</td>
<td>↑</td>
<td>↑</td>
<td>Increased during replication and senescence of human cord blood-derived multipotent stem cells (33)</td>
<td>ELF5, SRC1</td>
</tr>
<tr>
<td>miR-92b</td>
<td>↑</td>
<td>↑</td>
<td>Controls the G1/S checkpoint gene p57 in human ES cells (34)</td>
<td>p57</td>
</tr>
<tr>
<td>miR-24</td>
<td>↑</td>
<td>↑↑</td>
<td>Inhibits endodermal differentiation of human ES cells (35)</td>
<td>CDX2</td>
</tr>
<tr>
<td>miR-22</td>
<td>↑↑↑↑</td>
<td>↑↑</td>
<td>Highly expressed in mammary progenitor cells (25)</td>
<td>LGALS1, PLAGL2, MECP2</td>
</tr>
<tr>
<td>miR-19a</td>
<td>↑↑↑↑</td>
<td>↑↑</td>
<td>Up-regulated by activin A in human ES cells (36)</td>
<td>CD164, ARHGAP1, WNT3</td>
</tr>
<tr>
<td>miR-27a</td>
<td>↑↑↑↑</td>
<td>↑↑↑↑↑</td>
<td>Reduces the differentiation of human mesenchymal stem cells (24)</td>
<td>HOXB8, APRIN, SEMA4C</td>
</tr>
<tr>
<td>miR-19b</td>
<td>↑↑↑↑</td>
<td>↑↑↑↑</td>
<td>Down-regulated by activin A in human ES cells (36)</td>
<td>NEUROD1, WNT3, CCNT2</td>
</tr>
<tr>
<td>miR-29c</td>
<td>↑↑↑↑</td>
<td>↑↑↑↑↑</td>
<td>Up-regulated in the course of replicative senescence of mesenchymal stem cells (37)</td>
<td>RLF, TRAF4, PHC1</td>
</tr>
<tr>
<td>miR-99a</td>
<td>↑↑↑↑↑↑</td>
<td>↑↑↑↑↑↑</td>
<td>Differentially expressed in human mesenchymal stem cells (38)</td>
<td>HOXA1</td>
</tr>
<tr>
<td>miR-29a</td>
<td>↑↑↑↑↑↑</td>
<td>↑↑↑↑↑↑</td>
<td>Highly expressed in hematopoietic stem cells and down-regulated in hematopoietic progenitors (39)</td>
<td>RLF, GDF8, TRAF4</td>
</tr>
<tr>
<td>miR-125b</td>
<td>↑↑↑↑↑↑</td>
<td>↑↑↑↑↑↑</td>
<td>Critical for the suppression of human U251 glioma stem cell proliferation (40)</td>
<td>GPC4, TAZ, MSI1</td>
</tr>
</tbody>
</table>
induces stem cell commitment by regulating the expression of the mammalian lin-28 (a marker for pluripotency in ES cells) (26, 44) and its expression is significantly increased during the neural differentiation of ES and embryocarcinoma (EC) cells (26, 44). The downregulation of miR-21 and miR-125a (Table I) parallels the enriched progenitor cells in MDA-MB-231 and SUM1315 cells compared to MCF-7 cells (Fig. 2). miR-203 has been shown to control the keratinocyte differentiation of epithelial progenitor cells (16) and to be a tumor suppressor (17). This miRNA was depleted in a number of hematopoietic tumors due to hypermethylation, while its re-expression is capable of reducing tumor cell proliferation (17). Its expression was found to be markedly reduced in MDA-MB-231 and SUM1315 cells compared to MCF-7 cells (Table I and Fig. 3). miRNA depletion in metastatic MDA-MB-231 and SUM1315 cells correlates with the more aggressive phenotype of these cells compared to non-metastatic MCF-7 cells (14).

To shed light on the potential role of differentially expressed miRNAs in modulating tumor-initiating features, an analysis of target gene prediction was performed using the online miRGen database. Most miRNAs were predicted to have numerous target genes. miRNAs such as miR-99b, miR-200c and miR-7 have tens of predicted target genes, whereas other miRNAs (e.g., miR-148b, miR-375 and miR-20a) have hundreds of predicted target genes. Representative genes involved in the stemness are shown in Table I. LATS2, a potential target gene of miR-93, is activated by regulating the expression of the mammalian lin-28 (a marker for pluripotency in ES cells) (26, 44) and its expression is significantly increased during the neural differentiation of ES and embryocarcinoma (EC) cells (26, 44). The downregulation of miR-21 and miR-125a (Table I) parallels the enriched progenitor cells in MDA-MB-231 and SUM1315 cells compared to MCF-7 cells (Fig. 2). miR-203 has been shown to control the keratinocyte differentiation of epithelial progenitor cells (16) and to be a tumor suppressor (17). This miRNA was depleted in a number of hematopoietic tumors due to hypermethylation, while its re-expression is capable of reducing tumor cell proliferation (17). Its expression was found to be markedly reduced in MDA-MB-231 and SUM1315 cells compared to MCF-7 cells (Table I and Fig. 3). miRNA depletion in metastatic MDA-MB-231 and SUM1315 cells correlates with the more aggressive phenotype of these cells compared to non-metastatic MCF-7 cells (14).

To shed light on the potential role of differentially expressed miRNAs in modulating tumor-initiating features, an analysis of target gene prediction was performed using the online miRGen database. Most miRNAs were predicted to have numerous target genes. miRNAs such as miR-99b, miR-200c and miR-7 have tens of predicted target genes, whereas other miRNAs (e.g., miR-148b, miR-375 and miR-20a) have hundreds of predicted target genes. Representative genes involved in the stemness are shown in Table I. LATS2, a potential target gene of miR-93, is
essential for embryonic development, proliferation control and genomic integrity (45). A possible target gene of miR-21, SATB1, contributes to embryonic stem cell differentiation and regulates Nanog expression (46). As a likely target gene of miR-22, PLAGL2 restrains differentiation in neural stem cells (47). Although the published data on miRNA profiles in T-ICs are limited, evidence suggests that certain miRNAs play a significant role in the generation and maintenance of T-ICs. In C. elegans, mutation of lin-4 and let-7 miRNAs results in the generation of stem cell-like cells (48). Mammalian let-7 expression is depleted in human BrCa T-ICs and significantly increased in differentiated cells. Let-7 suppresses self-renewal by targeting H-RAS and induces differentiation by targeting HMGAl2 (10). The data from the present study further support the hypothesis that miRNAs are involved in the regulation of BrCa T-ICs. Future studies of the aberrantly expressed miRNAs in BrCa T-ICs may elucidate the mechanisms responsible for tumorigenesis, metastasis and cancer relapse, and may identify therapeutic molecular targets for anti-cancer drug discovery.

Taken together, these results indicate that BrCa cells with a higher prevalence of T-ICs possess distinct miRNA expression profiles that may contribute to the maintenance of stem cell properties. The mechanism by which miRNAs modulate BrCa T-ICs remains unknown. Moreover, our study suggests the potential diagnostic value of the miRNA expression signature in BrCa, including metastasis, although clinical evidence is required to confirm this hypothesis.

Acknowledgements

This study was supported by grants from the ‘Hundred Talents Program’, the Chinese Academy of Sciences (KZCX2-EW-404), and the National Natural Science Foundation of China (21077128 and 20921063).

References