Analysis of AC3-33 gene expression in multiple organ cancer and adjacent normal tissue by RNA in situ hybridization

FEN HU, SHAOQING YANG, SHAOBO LV, YAN PENG, LIJUN MENG, LIXIA GOU and XIUJUN ZHANG

1College of Life Sciences, College of Psychology, Hebei United University, Tangshan;
2Department of Environment and Chemical Engineering, Tangshan College, Tangshan, Hebei 063000, P.R. China

Received June 11, 2014; Accepted February 23, 2015

DOI: 10.3892/ol.2015.3112

Abstract. The AC3-33 gene encodes a secretory protein that can inhibit Elk1 transcriptional activity via the ERK1/2 pathway. In the current study, in situ RNA hybridization was used to detect the AC3-33 gene expression in multiple organ cancer and cancer-adjacent normal tissue. The results showed that the expression level of AC3-33 varies across different tissues. AC3-33 exhibited positive expression in squamous cell carcinoma of the esophagus, adenocarcinoma of the rectum, hepatocellular carcinoma, squamous cell carcinoma (SCC) of the lung, cancer-adjacent normal hepatic tissue, clear cell carcinoma of the kidney, invasive ductal carcinoma of the breast, SCC of the uterine cervix and cancer-adjacent normal kidney tissue. Negative expression of AC3-33 was observed in adenocarcinoma of the stomach and colon, cancer-adjacent normal esophageal tissue, cancer-adjacent normal gastric tissue, cancer-adjacent normal colon tissue, cancer-adjacent normal rectal tissue, serous adenocarcinoma of the ovary and cancer-adjacent normal ovarian tissue. However, the expression of AC3-33 in cancer adjacent normal breast tissue was partially positive. In conclusion, the AC3-33 gene does exhibit positive expression in certain carcinomas, which may indicate that AC3-33 has a significant involvement in the development and progression of these carcinomas.

Introduction

AC3-33 (GenBank name: C3orf33, accession no. FLJ31139), also known as chromosome 3 open reading frame 33, encodes a classical secretory protein with a predicted molecular mass of 29.3 kDa (1). Transcription factor activator protein-1 (AP-1) is crucial in the regulation of cellular proliferation, transformation and death (2). Using a dual-luciferase reporter assay system, our previous study found that AC3-33 significantly inhibited AP-1 transcriptional activity. Further investigation indicated that AC3-33 significantly inhibited the transcriptional activity of Elk1 and c-jun, but not of c-fos; additionally, AC3-33 significantly inhibits Elk1 transcriptional activity via the extracellular-signal-regulated kinases 1/2/mitogen-activated protein kinases pathway. This occurs via disruption of ERK1/2 MAPK pathway (3). AC3-33 is highly expressed in a number of tissues, including the adrenal glands and cervix, and expression is comparatively significantly reduced in the human leukemia cell lines, K562 and KG1a (4). However, the expression of AC3-33 in multiple organ tumors and cancer-adjacent normal tissue remains to be elucidated.

In the present study, RNA in situ hybridization was used to detect the AC3-33 gene expression in multiple organ tumors and cancer-adjacent normal tissue. An improved understanding of the expression of AC3-33 may offer more information as to the role of AC3-33 in the pathological process of tumorigenesis, which may subsequently provide a new insight into AC3-33 and its potential applications in the treatment and diagnosis of human disease.

Materials and methods

Tissue microarray. Tissue microarray was purchased from Chaoying Biotechnology (Xian, China; MCN602). Specimens for microarray were obtained from a total of 56 cases of multiple organ tumors and adjacent normal tissue. This included 10 organ types (esophagus, stomach, colon, rectum, liver, lung, kidney, breast, uterine cervix, ovary), three tissue cores for cancerous tissue, three adjacent normal tissue cores for each organ and a single specimen per case. For all specimens, details of age, gender, organ, pathological diagnosis, clinical grade, TNM classification, clinical stage, specimen type and results were recorded. This study was approved by the ethics committee of Hebei United University (Tangshan, China).

Preparation of digoxigenin-labeled probes for RNA in situ hybridization. Sense and anti-sense probes that matched the AC3-33 corresponding sequence were: Anti-sense, TATAA*GTTCCTCTGAACTTCAGTATTGAGGACGGTTTGTCTGTTCATGGTCTTTC-DIG; and sense, GAAATG*TTAAACTACGTGGACGATTA

Correspondence to: Professor Xiujun Zhang, College of Life Sciences, College of Psychology, Hebei United University, 57 Jianshenan Road, Tangshan, Hebei 063000, P.R. China
E-mail: xiujunzhang66@126.com

Key words: AC3-33, RNA in situ hybridization, cancer
CGCCGAATAACTGAGAATGGTTA-DIG. The asterisk indicates that the 3' terminal was labeled with digoxigenin. All probes were synthesized by Sangon Biotech (Shanghai, China).

RNA in situ hybridization. Hybridization procedures were performed in this study as described. Hybridization conditions were as follows: Anti-sense or sense probe concentration, 20 ng/μL; anti-digoxigenin antibody (catalog no. ab76907; Abcam, Cambridge, UK) dilution, 1:500; washing temperature, room temperature; dyeing temperature, 37˚C; dyeing time, 2 h. Deparaffinized sections were mounted on Denhardt-coated glass slides (D2532; Sigma Aldrich, St. Louis, MO, USA) and treated with pepsin (0.25 mg/ml in diethylpyrocarbonate H₂O-HCl) for 30 min in a 37˚C water bath. The treated sections were then processed for in situ hybridization at 42-47˚C for 24 h. The hybridization mixture contained the labeled oligonucleotide probe, 50% formamide, 10 mmol/l Tris-HCl, 1 mmol/l vanadyl-ribonucleoside complex (Sigma-Aldrich; catalog no. 94740), 1 mmol/l cetrimonium bromide (Sigma-Aldrich; catalog no. 655820, pH 7.0), 0.15 mol/l NaCl, 1 mmol/l EDTA (pH 7.0), 1xDenhardt's mixture and 10% dextran sulfate. Following hybridization, the slides were washed three times, 30 min each time, in 0.1 mol/l Tris buffered saline (TBS) at 47˚C, and subsequently treated with TBS (100 mmol/l Tris, pH 7.5, 150 mmol/l NaCl) containing 1% blocking reagent (Roche Diagnostics, Shanghai, China) and 0.03% Triton X-100 for 30 min at room temperature and incubated for 30 min with antidigoxigenin alkaline phosphatase-conjugated antibodies (Roche Diagnostics) diluted at 1:4000 in TBS containing 0.03% Triton X-100 and a 1% blocking reagent. After washing three times in TBS and 0.05% Tween, 15 min each time, the slides were rinsed in a diammonium phosphate (DAP) buffer (100 mmol/l Tris, pH 9.5, 100 mmol/l NaCl, 50 mmol/l MgCl₂) and subsequently hybridization signals were visualized using nitroblue tetrazolium and 5-brom-4-chlor-3-indolyl phosphate as substrates [DAP in 10% polyvinyl alcohol (Sigma-Aldrich; catalog no. 341584)]. Positive expression was determined to be 1+, 2+ and 3+ staining, and negative expression was observed as no staining.

Results

The association between AC3-33 expression and multiple pathological cell types. The AC3-33 gene expression in multiple organ and cancer-adjacent normal tissue was detected by RNA in situ hybridization. As shown in Table I and Fig. 1, the expression level of AC3-33 varies between the different tissues. The expression of AC3-33 is positive in squamous cell carcinoma (SCC) of the esophagus and adenocarcinoma of the rectum, but is negative in cancer-adjacent normal esophageal tissue and cancer-adjacent normal rectal tissue. AC3-33 exhibits positive expression in hepatocellular...
carcinoma and cancer-adjacent normal hepatic tissue, clear cell carcinoma of the kidney and cancer-adjacent normal kidney tissue. Negative AC3-33 expression was observed for adenocarcinoma of the stomach and cancer-adjacent normal gastric tissue, adenocarcinoma of the colon and cancer-adjacent normal colon tissue, serous adenocarcinoma of the ovary and cancer-adjacent normal ovarian tissue. AC3-33 exhibited positive expression in squamous cell carcinoma of the lung, invasive ductal carcinoma of the breast and squamous cell carcinoma of the uterine cervix. However, the expression of AC3-33 in cancer-adjacent normal breast tissue is partially positive.

Discussion

With >300,000 new cases per year, cancer of the esophagus, predominantly SCC, is one of the 10 most frequently diagnosed tumor types (5). Esophageal cancer often occurs in developing countries, and the incidence is greatly different between different regions (5). The development of molecular oncology in the last decade has provided much information with regard to genetic abnormalities in cancer, and the clinical characteristics of cancer patients can now be predicted on the basis of these genetic abnormalities. Expression of N-myc (6), int-2 (7), cyclin D1 (8) and p53 (9) may be useful markers for predicting the outcome and distant organ metastasis in patients with SCC of the esophagus. The current study also found that AC3-33 exhibits positive expression in esophageal SCC, but negative expression in cancer-adjacent normal esophageal tissue. These results indicate that AC3-33 may be a novel prognostic factor.

Colorectal cancer (also known as colon cancer, rectal cancer, bowel cancer or colorectal adenocarcinoma) is a cancer due to uncontrolled cell growth in the colon or rectum, or in the appendix (10). Genetic analysis has shown that colon and rectal tumors are genetically the same cancer (11). Although the prognosis of rectal adenocarcinoma is associated with histopathological features, including invasion of the rectal wall or perirectal fat and lymph node involvement, a number of patients experience recurrence despite undergoing potentially curative procedures and early pathological staging (12-13). It has been proposed that genetic alterations acquired during tumor development may predict prognosis (14). For example, the expression of the p53 protein has been found to predict a worse prognosis in rectal adenocarcinoma (14). Similarly to SCC of the esophagus, the current study identified positive AC3-33 expression in rectal adenocarcinoma, but negative expression in cancer-adjacent normal rectal tissue.

In conclusion, the differential expression of AC3-33 may be significant in the development and progression of rectal adenocarcinoma and esophageal SCC, and may be used as a prognostic indicator. However, the mechanism of AC3-33 function appears to be complex and further investigations are required to elucidate the role and molecular mechanisms of AC3-33 in the development and progression of rectal adenocarcinoma and esophageal SCC.

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (grant nos. 81072093; 30671092;
References