Correlation between DNA ploidy by flow cytometry and chromosome 3 aberration in oral squamous cell carcinoma

JOERG HEMMER1,2, KLAUS KRAFT3 and WILLIE F.P. VAN HEERDEN1

1Department of Oral Pathology and Oral Biology, University of Pretoria, Pretoria 0001, South Africa; 2Department of Tumor Biology, University of Ulm, D-89081 Ulm; 3Department of Pathology, Military Hospital Ulm, D-89070 Ulm, Germany

Received July 6, 2005; Accepted August 22, 2005

Abstract. Although flow cytometric DNA ploidy has turned out as a significant predictor of survival in oral squamous cell carcinoma, little is known about the underlying karyotypic structure of gross aneuploidy. We therefore analysed one diploid and 9 aneuploid carcinomas with relative DNA contents between 1.1 and 2.8 by fluorescence in situ hybridization with topologic markers for the centromere (3cen) and the terminal regions (3p, 3q) of chromosome 3. Progressing deviation of aberrant DNA contents from the normal diploid value correlated with increasing 3cen copy numbers per cell. A pronounced marker heterogeneity suggested that DNA-aneuploid cell populations consisted of karyotypically different clones. Monosomy of 3p was the only chromosomal alteration in the DNA diploid tumour. A significant 3p underrepresentation was a recurrent finding also in 7 of 9 aneuploid carcinomas while a subset of cells in each of 2 other cases showed a complete loss of one sister chromosome 3. In contrast, 7 of 9 aneuploid tumours exposed corresponding 3q and 3cen copy numbers, 2 showed a substantial 3q overrepresentation. It appears that amplification of chromosome 3 plays a role in the development of aneuploidy and the concurrent overexpression of 3q target genes. Acquired loss of the short arm of chromosome 3 in DNA-diploid tumour cells may contribute to the manifestation of recurrent 3q deletions in aneuploid cell populations.

Introduction

While a multistep carcinogenic process, in which mutations of tumour suppressor genes and oncogenes may play a critical role, has been proposed for the development of oral squamous cell carcinoma (1), DNA flow cytometric studies provided evidence that gross karyotype rearrangements contribute to the acquisition of invasive and metastatic behaviour (2,3). Aneuploidy has actually turned out as an independent predictor of survival in oral squamous cell carcinoma (3-6). The outcome of patients is essentially determined by a several-fold increase in risk of local and regional recurrence after the emergence of DNA-aneuploid cell populations (4,6-9).

DNA content aberrations signify a fundamental reorganisation of the tumour cell genome in which gains and losses of chromosomes substantially contribute to the expression of altered DNA contents (10). Remarkably, although DNA contents vary in wide range, thus implying corresponding karyotypic disparities, neither the metastatic behaviour of tumours nor the outcome of patients correlate with the degree of aneuploidy (2,7). A conceivable explanation is that aneuploid clones, despite their overall differences in chromosomal composition, may share discrete karyotypic aberrations that are decisive for the expression of malignant behaviour. As multiple studies suggested that mutations involving the short arm of chromosome 3 may be critical for the progression of squamous cell carcinomas of the head and neck (11-19), we analysed the pattern and frequency of rearrangements of chromosome 3 by fluorescence in situ hybridization in oral squamous cell carcinomas with different degree of DNA ploidy.

Patients and methods

Ten patients with primary squamous cell carcinomas of the oral cavity were selected for this study. Fresh tissue samples were collected from resected tumours and were immediately cut in small pieces of approximately 1 mm in diameter. The samples were divided into two parts which either were processed for DNA flow cytometry or for fluorescence in situ hybridization (FISH).

For flow cytometry, the tissue pieces were thoroughly homogenized in 0.9% NaCl by mincing with surgical scalpels. The nuclei were extracted by incubation in 0.5% (w/v) acid pepsin solution (pH 1.5) with careful stirring for 5 min, strained through a 50 μm nylon mesh, and fixed with 70% ethanol. The nuclei were stained with 5 ml of a DNA specific staining solution containing 0.2 mg 4',6-diamidino-2-phenyl-indole (DAPI, Serva, Heidelberg, Germany) and 11.8 g citric acid trisolium salt dihydrate dissolved in 100 ml distilled water (pH 8.0). The minimum incubation time was 30 min at room temperature.
temperature. Flow cytometry was carried out using a PAS II flow cytometer equipped with a high-pressure 100 W mercury lamp (Partec, Münster, Germany). The diploid cell population was used as a reference standard for the identification of aneuploid clones. The DNA index was expressed by the quotient of the respective modal peak values and reflected the discrepancy between the aneuploid DNA content and the normal diploid value (DNA index = 1.0).

For FISH, nuclei were extracted by mincing the tissue samples with surgical scalpels in 2.5% (w/v) citric acid. Tissue fragments were removed using a 50 μm nylon mesh. The suspension was then passed through a Dounce homogenizer with a piston to vessel distance of 200 μm. Nuclei were sedimented by sucrose centrifugation, fixed in cold 3:1 methanol-acetic acid and stored at -20˚C. Later, the fixed nuclei were spun onto silane-coated slides and air dried. After incubation in 2X SSC buffer (Sigma, Deisenhofen, Germany) for 30 min at 37˚C, the slides were dehydrated in ascending ethanol and air dried. The slides were incubated in 70% formamide/2X SSC for 2 min at 70˚C and carried through an ascending -20˚C alcohol series. Digoxigenin-labeled probes specific for the tandem repeats of α satellite DNA located in the centromeric region of chromosome 3 (3cen) as well as for telomere specific repeat units of the 3p26 and the 3q29 terminal ends of the chromosome (Oncor-Appligene, Heidelberg, Germany) were used for in situ hybridization. A solution was prepared containing 1.5 μl of DNA probe and 30 μl of 65% formamide/2X SSC/10% (w/v) dextran sulphate. After 5 min incubation at 70˚C, the hybridization solution was placed onto the sample slides, coverslipped, and hybridized overnight at 37˚C. Hybridization was visualized using FITC-conjugated anti-digoxigenin Fab fragments (Roche Diagnostics, Mannheim, Germany). The slides were counterstained with DAPI. An average number of 201 nuclei (range: 110-537) was examined by fluorescence microscopy.
Results

The 10 oral carcinomas had a wide range of DNA content aberrations (Fig. 1). One tumour consisted exclusively of flow cytometrically diploid cells, 9 carcinomas contained additional cell populations with atypical DNA contents. Six of aneuploid tumours expressed a single aneuploid cell line; 3 composed of 2 different aneuploid clones. The coefficients of variation, which reflects the sensitivity of flow cytometric measurements, ranged between 0.94% and 2.75% with a mean value of 1.81% (SD = 0.51).

For the DNA-diploid carcinoma (case 1), corresponding disomies were found for both the α satellite (3cen) and the 3q telomere specific DNA probes. While 30% of cells showed disomous findings for the 3p telomere marker, an analogous proportion of 70% of cells was monosomal for that region. Non-disomous 3cen signal numbers were distinctive for DNA-aneuploid carcinomas. One tumour with near-diploid DNA content (case 2) contained cells with 3cen monosomy. Regardless of a 3cen signal number heterogeneity, there was an overall increase of 3cen copy numbers with progressing deviation of aberrant DNA contents from the normal diploid value. Except for cases 8 and 10, in which consistent monosomies of all topologic markers in a subset of cells suggested the complete loss of one sister chromosome 3, all other aneuploid tumours exposed a significant underrepresentation of 3p copy numbers if compared to the frequency distribution of 3cen signals (Kolmogorov-Smirnoff test, P<0.01). While monosomies and disomies were prevailing findings for the 3p region, the 3q marker frequency did not differ from that of the centromere region, except cases 5 and 6 which showed a significant 3q overrepresentation with up to 10 copy numbers per cell.

Discussion

The current study illustrated that chromosome 3 was involved in manifold structural and numerical rearrangements particularly in DNA-aneuploid oral squamous cell carcinomas. A distinct heterogeneity of topologic DNA markers suggested that aneuploid cell populations frequently composed of karyotypically different tumour cell populations. However, there was an overall association between 3cen marker poly- somy and the degree of flow cytometric aneuploidy. Despite the gain in chromosome 3cen copy numbers during aneuploidy formation, there was a concurrent underrepresentation of 3p signals per cell in 7 of 9 aneuploid tumours. Two other cases contained cells with a complete loss of one sister chromosome 3. Monosomy of 3p was the only chromosome 3 aberration also in the DNA-diploid carcinoma.

These results are in agreement with reports showing that deletions involving the short arm of chromosome 3, also observed as loss of heterozygosity in molecular genetic studies, are frequent cytogentic changes in carcinomas of the head and neck (11-16,18). Deletions of 3p have been described for many kinds of solid tumours and gave reason to define a fragile site at 3p14, FRA3B, which is among the most common regions impacted by chromosomal strand breaks within the human genome (20). According to the concept that loss of tumour suppressor gene function is regarded as crucial for malignant transformation and tumour progression, the short arm of chromosome 3 is a prime candidate region to search for negative regulators of cell proliferation and differentiation. The number of tumour suppressor genes located on 3p is hard to estimate, but the fragile histidine triad gene (FHIT) has turned out to play a significant role in oral carcinoma development (1).

Allelic loss of 3p has frequently been detected in pre-malignant oral lesions and thus appears to be an early event in oral carcinogenesis (16,21,22). Accordingly, 3p marker monosomy in a flow cytometrically diploid tumour suggests a manifestation of 3p deletions already at the DNA-diploid stage of oral squamous cell carcinoma progression. Amplification of chromosomes with acquired 3p deletions during gross aneuploidy formation may actually contribute to the overall 3p underrepresentation in aneuploid tumours.

In contrast, concordant 3q and 3cen marker frequencies suggest a simultaneous amplification of the long arm of chromosome 3 with its centromere region in most of the aneuploid carcinomas. There were only two cases expressing a distinct 3q marker overrepresentation. These findings are consistent with analogous observations in head and neck carcinomas using comparative genomic hybridization (14). However, it is obvious that regulatory genes are subject to alterations of their dosage independent of whether the gain of genetic material is due to amplifications of discrete DNA sequences or to the increase in chromosome copy numbers. It has actually been evidenced that overexpression of p53, a p53 homologue located at 3q27-3q29, may play a critical role in squamous cell carcinoma development (23).

In conclusion, structural rearrangements involving the long arm of chromosome 3 are infrequent in oral squamous cell carcinomas, but the regular gain of 3q copy numbers during gross aneuploidy formation may give rise to over-expression of target genes. Cell populations with 3q deletions despite the overall gain in chromosome 3 copy numbers are regular characteristics of aneuploid tumours. Loss of 3q in a DNA-diploid case may also suggest that deletions of the short arm of chromosome 3 precede the emergence of tumour cell populations with gross karyotypic aberrations and may contribute to oral tumour progression.

References