Abstract. The purpose of this study was to determine whether a combination treatment of temozolomide with celecoxib is effective in the rat orthotopic glioma model. After stereotactic injection of C6/LacZ rat glioma cells into the Sprague Dawley rat brain, the rats were randomly assigned to four treatment groups [group 1, control treatment; group 2, celecoxib (25 mg/kg p.o. everyday) alone; group 3, temozolomide (7.5 mg/kg i.p. for 5 days at 2nd week) alone; group 4, a combination of celecoxib and temozolomide]. Rats were sacrificed 18 days after treatment, and the body weight, tumor volume, tumor cell proliferation, microvessel densities, and apoptosis were evaluated. There was a significant reduction of tumor volume in combination group compared to control or single-agent therapy. The median tumor volume was estimated to be 111.5 mm\(^3\) (control), 65.0 mm\(^3\) (celecoxib), 71.8 mm\(^3\) (temozolomide) and 18.7 mm\(^3\) (combination). In the combination group, there was increased tumor cell apoptosis as well as decreased microvessel density and tumor cell proliferation relative to the control and single-agent therapy (P<0.05). Collectively, the data suggest that the combination celecoxib and temozolomide may provide a novel and effective approach to the treatment of glioblastoma.

Introduction
Multimodality treatment involving surgery, radiation therapy, and chemotherapy is an accepted therapeutic strategy for glioblastoma. It is generally accepted that more extensive resection is a good prognostic factor (1-3). Compared with the significant effect of radiation therapy on glioblastoma, chemotherapy has a limited effect on these lesions (4). However, certain patients achieve marked and prolonged responses to chemotherapy, and molecular markers are beginning to be found that may predict which patients fall into this group (5-7).

Temozolomide is a methylating agent used in the therapy of malignant glioma. It is a lipophilic analog to the triazene dacarbazine and dissolves in watery solutions spontaneously to the active metabolite 5-(3methyltriazin-1-yl)imidazole-4-carbozamide (8). Due to its lipophilic properties, it is orally available and is able readily to cross the blood-brain barrier. Apart from its methylating properties, inhibition of protein kinase C has been implicated as a possible mechanism of action (9).

Cyclooxygenase-2 (COX-2) enzyme expression may be important in maintaining a favorable milieu for tumor survival in several mechanisms such as promoting angiogenesis or inhibition of apoptosis through prostaglandin synthesis (10). Also, COX-2 inhibitors have advantages that make their use potentially beneficial for treating malignant glioma (10). Additionally, COX-2 inhibitors have impaired human glioma-derived cell line growth in vitro (11) and have shown intracranial inhibition in the rat glioma model (12).

In general, chemotherapeutic agents can be divided as cytotoxic or cytostatic. Cytotoxic agents result in tumor cell death using these mechanisms including DNA alkylation, DNA cross-linkage, DNA strand breaks, and mitotic spindle disruption (13). Cytostatic agents alter tumor biology by inhibiting tumor growth, tumor spread, or both, but they do not kill tumor cells directly (13). As might be expected, these cytostatic agents (cis-retinoic acid, thalidomide, tamoxifen, celecoxib) do not usually result in marked tumor shrinkage. However, partial responses and prolonged disease stability have occurred with several agents. They are often combined with cytotoxic agents for the treatment of glioblastoma (14-17).

To evaluate the potential of celecoxib and temozolomide as novel therapeutic agents against glioblastoma, we evaluated the effect of the combination treatment with celecoxib and temozolomide on glioblastoma cells in an orthotopic rat model, which is relatively resistant to temozolomide. In order to investigate the mechanism of growth inhibition, we evaluated...
the expression level of proliferation-related protein, endothelial cell-related protein and apoptosis-related protein, after treatment with celecoxib alone, temozolomide alone and the combination of celecoxib and temozolomide.

Materials and methods

Glioma cell lines and culture condition. The rat glioblastoma cell line C6/LacZ was obtained from the American Type Culture Collection (Manassas, VA) and maintained in DMEM supplemented with 10% fetal bovine serum, penicillin (100 units/ml), and streptomycin (100 μg/ml) and passaged at 5% CO2, 37˚C.

Materials and methods

Glioma cell lines and culture condition. The rat glioblastoma cell line C6/LacZ was obtained from the American Type Culture Collection (Manassas, VA) and maintained in DMEM supplemented with 10% fetal bovine serum, penicillin (100 units/ml), and streptomycin (100 μg/ml) and passaged at 5% CO2, 37˚C.

Materials and methods

Reagents. Primary antibodies were purchased as listed: mouse anti-rat CD31 (BD Pharmigen, San Diego, CA); mouse anti-proliferating cell nuclear antigen (PCNA) clone 10 (Dako A/S, Copenhagen, Denmark). The following secondary antibodies were used for colorimetric immunohistochemistry (IHC) analysis: peroxidase-conjugated goat anti-rabbit IgG (Vector Laboratories, Inc., Burlingame, CA); biotinylated goat anti-rabbit IgG (Zymed Laboratories, Inc., San Francisco, CA); biotinylated anti-mouse IgG (Vector Laboratories); HRP goat anti-mouse IgG (Vector Laboratories, Inc., Burlingame, CA); biotinylated goat anti-mouse IgG (Vector Laboratories); biotinylated goat anti-mouse IgG (Vector Laboratories); anti-mouse IgG (Zymed Laboratories); biotinylated goat anti-mouse IgG (Vector Laboratories). Terminal deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL) staining was performed using a commercial apoptosis detection kit (Chemicon International, Inc., Temecula, CA). Other reagents included stable 3,3’-diaminobenzidine (Research genetics, Huntsville, AL), ABC kit (Vector Laboratories), Gill’s hematoxylin (Sigma Chemical Co., St. Louis, MO). Temozolomide (Temodal, Schering-Plough, Bruxelles, Belgium), for IP, temozolomide was dissolved in 10% DMSO at 7.5 mg/kg and prepared daily. Celecoxib (Celebrex (SC-58635), Pfizer, New York, NY) was dissolved in ethanol and prepared just before use.

Animals. The orthotopic rat glioma model was made by the implantable guide-screw system (Plastics One, Roanoke, VA) which was composed of a guide screw, stylet, and a modified Hamilton syringe (18). All procedures were performed in accordance with the regulations of the Animal Care and Use Committee of Samsung Medical Center. The rats were housed in groups of five in cages within a standardized barrier facility and maintained on a 12-h day/night cycle at 23˚C. Animals were given free access to laboratory chow and water.

Orthotopic implantation of tumor cells and necropsy procedure. Before all surgical procedures, male (200-250 g) Sprague Dawley rats were anesthetized with an intraperitoneal injection of a stock solution of ketamine hydrochloride (50 mg/ml) and xylazine (23.32 mg/ml). The heads of the anesthetized rats were shaved and disinfected with a solution of 70% ethyl alcohol and povidone iodine, after which they were secured in a rodent stereotactic frame just for head fixation. A midline incision was made on the dorsal aspect of the head with the pericranium moved laterally to expose the bregma. The guide-screw entry site was marked at a point 3.0 mm left lateral and 1 mm anterior to the bregma. This point was chosen because it is located directly above the caudate nucleus, which has been shown to be a highly reliable intracranial site for tumor engraftment (18,19). Using a small hand-controlled, 1 mm in diameter, twist drill (Plastics One), a drill hole was made in the animal's skull at the entry point. The drill bit penetrates the dura and thereby opens it. The sterilized guide screw was rotated into the hole until it was flush with the skull. The screw was threaded into the hole and secured with several firm twists. The top of the screw was approximately 1 mm above the skull surface and its shaft protruded through the dura and into the brain surface. The central hole of the guide screw was closed by placing a cross-shaped stylet inside it. The wound was closed with No. 4-0 vicryl sutures. The animals were kept warm until they recovered from anesthesia. Animals were allowed to move freely until the time of cell implantation. Seven days later, animals with the guide screw in place were reanesthetized as described earlier. The guide screw was cleaned with povidone.

Table I. Therapy for C6/LacZ rat gliomas implanted orthotopically into the brains of rats.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control (n=10)</th>
<th>Celecoxib (n=10)</th>
<th>Temozolomide (n=10)</th>
<th>Celecoxib plus Temozolomide (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median body weight (range: g)</td>
<td>349.3 (292.5-416)</td>
<td>355.3 (285.5-396)</td>
<td>340.5 (313.5-439)</td>
<td>330.0 (297-360.5)</td>
</tr>
<tr>
<td>Mean body weight ± SD (g)</td>
<td>358.7±44.5</td>
<td>348.3±32.7</td>
<td>362.4±46.7</td>
<td>326±25.9</td>
</tr>
<tr>
<td>Median tumor volume (range: mm³)</td>
<td>111.5 (63.4-137.7)</td>
<td>65.0 (31.5-204.0)</td>
<td>71.8 (35.7-153.8)</td>
<td>18.7 (2.3-74.1)</td>
</tr>
<tr>
<td>Mean tumor volume ± SD (mm³)</td>
<td>109.8±29.9</td>
<td>81.1±54.3</td>
<td>80.3±43.1</td>
<td>25.8±26.2</td>
</tr>
</tbody>
</table>

A significant difference between groups is observed (Kruskal-Wallis, P<0.001).

Animals. The orthotopic rat glioma model was made by the implantable guide-screw system (Plastics One, Roanoke, VA) which was composed of a guide screw, stylet, and a modified Hamilton syringe (18). All procedures were performed in accordance with the regulations of the Animal Care and Use Committee of Samsung Medical Center. The rats were housed in groups of five in cages within a standardized barrier facility and maintained on a 12-h day/night cycle at 23˚C. Animals were given free access to laboratory chow and water.

Orthotopic implantation of tumor cells and necropsy procedure. Before all surgical procedures, male (200-250 g) Sprague Dawley rats were anesthetized with an intraperitoneal injection of a stock solution of ketamine hydrochloride (50 mg/ml) and xylazine (23.32 mg/ml). The heads of the anesthetized rats were shaved and disinfected with a solution of 70% ethyl alcohol and povidone iodine, after which they were secured in a rodent stereotactic frame just for head fixation. A midline incision was made on the dorsal aspect of the head with the pericranium moved laterally to expose the bregma. The guide-screw entry site was marked at a point 3.0 mm left lateral and 1 mm anterior to the bregma. This point was chosen because it is located directly above the caudate nucleus, which has been shown to be a highly reliable intracranial site for tumor engraftment (18,19). Using a small hand-controlled, 1 mm in diameter, twist drill (Plastics One), a drill hole was made in the animal's skull at the entry point. The drill bit penetrates the dura and thereby opens it. The sterilized guide screw was rotated into the hole until it was flush with the skull. The screw was threaded into the hole and secured with several firm twists. The top of the screw was approximately 1 mm above the skull surface and its shaft protruded through the dura and into the brain surface. The central hole of the guide screw was closed by placing a cross-shaped stylet inside it. The wound was closed with No. 4-0 vicryl sutures. The animals were kept warm until they recovered from anesthesia. Animals were allowed to move freely until the time of cell implantation. Seven days later, animals with the guide screw in place were reanesthetized as described earlier. The guide screw was cleaned with povidone.
in 20 random fields at x400 magnification. cMean ± SD positive cells/field determined from quantitation in 20 random fields at x200 magnification. dA significant difference between groups is observed (Kruskal-Wallis, P<0.001). eMean ± SD positive cells/field determined from quantitation in 20 random fields at x400 magnification. fMean ± SD positive cells/field determined from quantitation in 20 random fields at x200 magnification. gMean ± SD positive cells/field determined from quantitation in 20 random fields at x400 magnification. hPCNA, proliferating cell nuclear antigen; MVD, microvessel density; TUNEL, terminal deoxynucleotidyl transferase-mediated nick end-labeling.

Table II. Immunohistochemical analysis of tumors from C6/LacZ rat glioma cells growing in the brain of rats.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control (n=10)</th>
<th>Celecoxib (n=10)</th>
<th>Temozolomide (n=10)</th>
<th>Celecoxib plus Temozolomide (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCNAb</td>
<td>141.6±54.0</td>
<td>69.9±15.1</td>
<td>71.8±16.9</td>
<td>39.4±10.8</td>
</tr>
<tr>
<td>CD31 (MVD)c</td>
<td>19±9.8</td>
<td>17±5.9</td>
<td>12.7±6.2</td>
<td>7.7±4.5</td>
</tr>
<tr>
<td>TUNELa,d</td>
<td>1.2 ± 1.3</td>
<td>4.4 ± 1.4</td>
<td>6.9 ± 3.9</td>
<td>14.6 ± 4.0</td>
</tr>
</tbody>
</table>

Table II. Immunohistochemical analysis of tumors from C6/LacZ rat glioma cells growing in the brain of rats.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control (n=10)</th>
<th>Celecoxib (n=10)</th>
<th>Temozolomide (n=10)</th>
<th>Celecoxib plus Temozolomide (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCNAb</td>
<td>141.6±54.0</td>
<td>69.9±15.1</td>
<td>71.8±16.9</td>
<td>39.4±10.8</td>
</tr>
<tr>
<td>CD31 (MVD)c</td>
<td>19±9.8</td>
<td>17±5.9</td>
<td>12.7±6.2</td>
<td>7.7±4.5</td>
</tr>
<tr>
<td>TUNELa,d</td>
<td>1.2 ± 1.3</td>
<td>4.4 ± 1.4</td>
<td>6.9 ± 3.9</td>
<td>14.6 ± 4.0</td>
</tr>
</tbody>
</table>

Therapy for established C6 rat glioma growing in the brain of rats. All animals underwent implantation of guide screws and after 1 week they were divided into four groups (Table I). For all animals (40 rats), 1x10⁵ C6/LacZ glioma cells (in Hank’s balanced salt solution) were implanted. All injections consisted of a total volume of 10 μl delivered over 12.5 min by a microinfusion pump. Based on the entry point of the guide screw and the depth of needle penetration, it is certain that the cells were injected into the caudate nucleus (19). The 26-gauge needle was retracted over a period of 10-15 min. The stylot was repositioned in the screw hole by using fine forceps to close the system. The animals were kept warm until they recovered from anesthesia and were allowed to move around freely until the time of sacrifice. Rats were sacrificed 18 days after treatment and weighed. For immunohistochemistry (IHC) and H&E staining procedures, tumors were fixed in formalin and embedded in paraffin. For IHC requiring frozen tissues, tumors were embedded in OCT compound (Miles, Inc., Elkart, IN), frozen rapidly in liquid nitrogen, and stored at -80°C.

Tumor volume measurement. The fixed brains in 10% buffered formalin were cut axially every 2 mm and embedded in paraffin. Tumor volume was calculated (12) by measuring the section with the largest tumor portion and applying the formula: length x width² x 0.5 (12).

Immunohistochemical (IHC) analysis of tissue. Paraffin-embedded tissues were used to assay the expressions of PCNA (parameter for cell proliferation) and TUNEL (parameter for apoptosis). Tissue sections (4-6 μm thick) were mounted on silanized glass slides and dried overnight. The sections were deparaffinized in xylene, followed by treatment with a graded series of alcohol [100, 95, and 80% ethanol/ddH₂O (vol/vol)] and rehydrated in PBS (pH 7.5). For PCNA, sections were microwaved 5 min in water. Endogenous peroxidase was blocked by a 5-min treatment in 3% H₂O₂ in methanol for PCNA. For the staining of mouse anti-PCNA clone PC-10 (1:300; Dako Corporation, Carpinteria, CA), slides were treated with primary antibodies in 5% normal horse serum and 1% normal goat serum phosphate buffer solution, then they were incubated at 4°C overnight. Peroxidase-conjugated secondary antibodies were used and visualized by incubating the slides with stable 3,3’-diaminobenzidine (DAB) for 10-20 min. The sections were rinsed with distilled water, counterstained with Gill’s hematoxylin for 1 min, and mounted with Universal Mount (Research Genetics, Huntsville, AL). Control samples exposed to secondary antibody alone showed no specific staining. To minimize bias and subjectivity, the data for this assay were recorded by two separate individuals who were both blinded to the identity of the slides. Areas representing true positive staining were then selected. Ten different sections of each slide were scored using 10 different areas in each field. Apoptotic cells were visualized using a commercially available TUNEL kit (Intergen Company, Purchase, NY). Expression of CD31 (parameter for microvessel density) was determined on fresh frozen tissues that were cut into 4 μm thick sections and mounted on positively charged slides. The slides were stored at -80°C; sections were fixed in cold acetone for 10 min and then washed twice with PBS for 3 min each time. Detection of PCNA, CD31 and TUNEL was carried out as described previously (20).
Quantification of PCNA, microvessel density (MVD) and TUNEL. PCNA is one of proliferation-related proteins. For the quantification of PCNA expression, the number of positive cells (PCNA+) was quantified in 20 random fields at x400 magnification. CD31 is known to be an endothelial cell-related protein. To quantify MVD, 20 random fields at x200 magnification were examined for each tumor, and the microvessels within those fields counted. A single microvessel was defined as a discrete cluster or single cell stained positive CD31 (CD31+), and the presence of a lumen was not required for scoring as a microvessel. For the quantification of TUNEL (apoptosis-related protein) expression, the number of positive cells (TUNEL+) was quantified in 20 random fields at x400 magnification. For the exact quantification, two individual specialists were involved in counting PCNA+ cells, CD31+ cells, and TUNEL+ cells.

Statistical analysis. Statistical analysis was completed using commercially available software (SPSS version 10.0.7; SPSS Institute, Chicago, IL). Statistical significance was accepted when P<0.05. All measurements are reported as the mean ± standard deviation (SD). Comparisons of tumor volume, body weight, and PCNA count, TUNEL+ cells and MVD among the different treatment groups, were analyzed by Kruskal-Wallis test. Tumor volume and the number of PCNA and TUNEL positive cells as well the MVD between the two groups were compared by the least significant difference (LSD) test using ranks for multiple comparisons. The synergistic effects of celecoxib and temozolomide were compared by ANOVA test by using contrast.

Results

Inhibition of glioblastoma cell growth in the brain of rats. The C6/LacZ glioma cells were implanted into the caudate nucleus of S-D rats. The rats were randomized into four treatment groups of 10 rats each. The first group received daily saline p.o. and saline i.p. from the 8th to 12th day. The second group received daily p.o. celecoxib (25 mg/kg). The third group received an i.p. injection of temozolomide (7.5 mg/kg) for 5 days after 1 week. The fourth group received daily p.o. celecoxib (25 mg/kg) and i.p. temozolomide (7.5 mg/kg) for 5 days after 1 week. All rats in the control and treatment groups were sacrificed on day 18 because the control rats started to become sick. The data from two independent experiments were very similar and were therefore combined. The data for the effect of these therapies on C6/LacZ glioma cells are summarized in Table I and Fig. 1A.

Celecoxib therapy alone and temozolomide therapy alone was effective in reducing tumor volume. They were statistically
significant compared with the control therapy (P<0.05). Among the celecoxib alone group and temozolomide alone group, there were no significant differences in the tumor volume (P=0.445). The combination of celecoxib and temozolomide further reduced tumor volume. This reduction in tumor volume was statistically significant compared with all other therapy (P<0.01) although there was no statistically significant synergistic effect of the combination (P=0.509). Body weight was maintained in all groups of rats.

IHC analysis. In the next step of experiments, we determined the mechanism responsible for the therapeutic effects of celecoxib plus temozolomide. The immunohistochemical data demonstrate that the inhibition in tumor growth observed in tumors of rats treated with celecoxib alone, temozolomide alone and in combination was accompanied by a reduction in tumor cell proliferation (PCNA count) and induction of apoptosis (TUNEL count) (Table II, Fig. 2). Celecoxib alone (69.9±15.1), temozolomide alone (78.1±16.9), and the combination therapy (39.4±10.8) decreased the number of PCNA+ cells in tumors compared with the control (141.6±54.0) (P<0.001) (Fig. 1B). There were no significant difference in the number of PCNA+ cells between celecoxib and temozolomide alone group (P=0.888). PCNA was most significantly reduced from the tumors of control rats receiving both celecoxib and temozolomide (P<0.001 versus all other groups) although there was no statistically significant synergistic effect of the combination (P=0.807). MVD (CD31 count) was reduced from the control level (19±9.8) in tumors treated with temozolomide alone (12.7±6.2) (P<0.01), but not in celecoxib alone (17±5.9) (P=0.938). The most significant reduction was in the combination therapy group, where MVD decreased to 7.7±4.5 (P<0.001 versus all groups) (Fig. 1C) and furthermore there was statistically significant synergistic effect of the combination (P=0.012). The number of TUNEL+ cells increased significantly from 1.2±1.3 in the control group to 4.4±1.4 (celecoxib), 6.9±3.9 (temozolomide), and 14.6±4.0 (combination) (P<0.001). There were more TUNEL+ cells in the temozolomide group than the celecoxib group (P<0.05). Combination therapy significantly increased the number of TUNEL+ cells compared with other all groups (P<0.001) (Fig. 1D) although there was no statistically significant synergistic effect of the combination (P=0.955).

Discussion

Despite aggressive treatments, there has only been slight improvement in the prognosis of glioblastoma using current standard therapeutic approach including operation, radiation therapy, chemotherapy and immunotherapy (21-23). For glioblastoma, COX-2 overexpression is found in tumors with more malignant histology, and its level of expression correlates with prognosis (11,24,25). The effect of COX-2 inhibitors in preventing malignant progression or delay of
recurrence of malignant glial tumors has not yet been determined. It was reported that high-grade glioma tissues expressed elevated levels of COX-2, when compared with low-grade glioma specimens (11). In a number of cell and animal models, induction of COX-2 has been shown to promote cell growth, inhibit apoptosis, and enhance cell motility and adhesion; however, the mechanisms of these activities are largely unknown (26). Celecoxib is a selective COX-2 inhibitor that has been used extensively in osteoarthritis treatment because of its anti-inflammatory properties. COX-2 is overexpressed in most malignant gliomas, and COX-2 inhibitors have impaired malignant glioma-derived cell line growth in vitro and in vivo (12,27). Celecoxib has excellent oral bioavailability. Though little toxicity data are available for glioma patients, patients receiving celecoxib as an anti-inflammatory agent have been prone to gastritis and platelet function inhibition. Compared with other anticancer agents, COX-2 inhibitors are relatively safe. Although COX-2 inhibitors are not cytotoxic agents, their known anti-proliferative, proapoptotic, anti-vascular, and anti-invasive effects support their use in the prevention of glioma progression and as a combination treatment with chemotherapy or radiation therapy. Our prior study showed that tumors that highly express COX-2 as well as epidermal growth factor receptor (EGFR) or Akt might respond well to the COX-2 inhibitor celecoxib and treatment of rat gliosarcoma in rat brain with COX-2 inhibitor celecoxib significantly decreased cell growth and increased apoptosis (12). Combination treatment of temozolomide and celecoxib significantly inhibited the tumor volume of C6/LacZ rat glioma cells implanted in the brains of rats and tumor progression more than the single agent (celecoxib or temozolomide) therapy. This result showed that the combination treatment influenced tumor cell biology including proliferation, angiogenesis and apoptosis, which correspond with our earlier study that celecoxib inhibits glioma cell growth which came from the inhibition of cell proliferation and induction of apoptosis. Although there was a reduction of MVD in the celecoxib alone group compared with the control group, it was not a significant difference. However, we found that combination treatment showed a synergistic effect on the reduction of MVD in the C6/LacZ rat orthotopic glioma model. These findings suggested that the celecoxib has anti-angiogenic effect as reported before (28,29).

Temozolomide is an imidazotetrazine derivative that has become one of the most commonly used chemotherapy agents for glioblastoma. Moreover, its antiangiogenic activity has been demonstrated in several phase II trials (30,31). This study demonstrates that temozolomide inhibited the growth of tumors and was accompanied by a reduction in tumor cell proliferation and induction of apoptosis. Additionally, MVD was decreased compared to the control group indicating antivascular effect in the temozolomide treatment group. This result is similar to the reports by other authors that temozolomide inhibits angiogenesis (32-34).

C6 glioma cell line has been stated originating from brain tumors formed in random bred Wistar-Furth rats (35). Although the origin of the C6 glioma cell line is unclear, this cell line is considered to be a useful experimental model system for the study of glioblastoma growth and the screening for future drug targets and for the development of novel therapies (36). C6 rat glioma is not a sensitive tumor for the treatment of temozolomide. Even though there was a significant reduction of the tumor, the extent of tumor reduction was <30%. This model is good to evaluate the combination effect of celecoxib and temozolomide because of the tumor's relative chemoresistance to temozolomide. In our study with temozolomide, C6 rat glioma became more sensitive with combination of celecoxib.

In our study, celecoxib and temozolomide had more effect on the tumor volume, cell proliferation, and apoptosis; although there was no synergism. The combination has synergistic effect on the MVD. The synergistic effect of combination treatment on the MVD indicates that the glioblastomas, which have the most prominent endothelial cell proliferation as well as Cox-2 expression, may be effective to the combination treatment. Early results from a small phase I trial that combined celecoxib and temozolomide for the treatment of malignant gliomas has been published (Pannullo S, et al, Proc Am Soc Clin Oncol 22: abs. 114, 2003) and recently, phase II trials have been initiated in some centers, including our own.

According to our data, when Cox-2 inhibitors are used in glioblastoma patients, MVD and expression of Cox-2 can be a good parameter of combination treatment. A metronomic antiangiogenic chemotherapeutic protocol might be a good strategy with which to combine the Cox-2 inhibitors. However, more research remains to be done on the exact antglioma mechanism of this combination and further detailed studies should be made in a large number of patients.

Acknowledgements

The present study was supported by the Samsung grant, #SBRI (CA42081) and the Sungkyunkwan University School of Medicine and In-Sung Foundation for Medical Research (C-A4-826-1). We thank Sun Woo Kim, for her expert advice in the statistical work of this study and we thank Mi-Hyun Kim, Mi Ryung Song and Jin Hyun Prak for their animal care and immunostaining work, and also thank Meen Jong Lee, Hyun Jeong Lim and Hee Jin Bae for editing the report.

References