Utility of tumour-infiltrating CD25+FOXP3+ regulatory T cell evaluation in predicting local recurrence in vertical growth phase cutaneous melanoma

CLELIA MIRACCO1, VASILEIOS MOURMOURAS1, MAURIZIO BIAGIOLI2, PIETRO RUBEGNI2, SUSANNA MANNUCCI1, IRENE MONCIATTI1, ELENA COSCI1, PIERO TOSI1 and PIETRO LUZI1

1Department of Human Pathology and Oncology, Section of Pathological Anatomy; 2Department of Clinical Medicine and Immunological Sciences, Section of Dermatology, University of Siena, Siena, Italy

Received May 24, 2007; Accepted July 9, 2007

Abstract. Tumour-infiltrating lymphocytes (TILs) represent the local immune response to cancer, however, their correlation with tumour behaviour is not unanimously considered in the literature. Most studies have not characterized TILs, that are known to comprise distinct subsets, bearing different roles in the complex tumour microenvironment. Characterization of patient lymphocytes has been mainly performed in peripheral blood, that is not always representative of the local immune status. Only few investigations have been performed at the tissue level in cancer, including melanoma. TILs encompass different populations of effector and regulatory T cells (Tregs), and the relevance of the latter in tumour progression is widely accepted. The transcription factor gene product FOXP3 is considered the most reliable marker of Tregs. However, it has not been extensively evaluated in primary cutaneous melanoma. We analyzed 66 vertical growth phase primary cutaneous melanomas, aiming at finding differences in TIL subsets between two groups of cases, that behaved differently in terms of local recurrence. In our study, the percentage of Tregs, as characterized by CD25 and FOXP3 expression, both among tumour cells, inside tumour parenchyma and at its periphery, and among TILs, at the tumour-stroma boundary, was significantly higher in cases that recurred than in those that did not (p=0.00065; p=0.00014; p<0.00001, respectively). TIL characterization by immunohistochemistry in melanoma diagnostic reports, could add further information. The analysis of a larger series of patients and correlation with other clinical parameters, such as distant metastases and/or patient survival, are mandatory for validating its use as a prognostic indicator.

Introduction

Tumour-infiltrating lymphocytes (TILs) are considered a prognostic factor in human cutaneous melanoma, thus they should be evaluated in diagnostic reports (1,2). However, some studies failed to support their prognostic role in cancer, and their pathophysiological importance remains controversial (2-6). In the tumour microenvironment, TILs encompass various subsets of lymphocytes with different and sometimes opposite functions. Their immunophenotypic characterization is still incomplete. Furthermore, additional factors including cytokines, as well as mechanisms of tumour cell immune evasion can influence TIL effects, resulting in a complex humoral and cell-mediated immune response (7-9).

The majority of TILs are CD3+ T cells: they include CD4+ and CD8+ subsets, the latter comprising cytotoxic lymphocytes, which are important effectors against melanoma cells; their numbers usually correlate with a more favourable prognosis (1,2). Cytotoxic CD8+ lymphocytes include CD3+ and CD3- (natural killer) cells, and both are characterized by the expression of granzyme b, a serine protease, and TIA-1, a membrane-associated protein, which can induce apoptotic cell death, therefore resulting in tumour cell killing and melanoma regression (9,10). The expression of CD25 (the α chain of the IL-2 receptor) allowed for grouping CD4+ cells in two broad subsets, T helper and T regulatory cells, and showed quite different characteristics (11). The CD8+ T cell activity against tumour and patient survival is enhanced by CD4+ CD25 (T helper) cells, and downregulated by CD4+ CD25+ (T regulatory, Treg) cells, that mediate active suppression, another mechanism that sustain unresponsiveness towards self-antigens, besides deletion or functional inactivation of self-reactive lymphocytes (11,12). However, CD25 was found to be expressed also by activated effector T cells (13). This partly explains the contrasting results of many previous studies, that did not look at more specific markers of Tregs (13,14).

Recently, a population of CD4+ lymphocytes with strong regulatory activity on effector T cells was isolated in the thymus and peripheral blood. Additionally to the high levels of CD25, they specifically express the forkhead-winged helix transcription factor gene product Foxp3 (CD4+CD25high+)
FOXP3+ Treg cells (14). FOXP3 is required for the generation and activity of the Tregs, and is considered their most reliable marker, being specifically expressed by CD4+CD25highFOXP3+ Treg cells (13,14). Natural CD4+CD25highFOXP3+ Tregs are able to prevent reactivity to both self- and nonself-antigens (14). A population of CD4+CD25highFOXP3+ Tregs (called ‘adaptive Tregs’), which inhibits the CD4+CD25 effector T cells, was demonstrated to develop outside the thymus and peripheral blood (15,16). Adaptive Tregs are induced by different stimuli, including the presence of IL-10 and TGF-β; alike natural Tregs, peripheral Tregs are characterized by cytokine dependence (15,16).

Recently, Tregs were identified in normal skin (17), where they may regulate the local immune response. Tregs have been demonstrated in experimental and naturally-occurring cancerous and non-cancerous diseases, in the lesional tissue, where they may be important in inducing or preventing reactivity to both self- and nonself-antigens (14). A population of CD4+CD25+FOXP3+ Tregs (called ‘adaptive Tregs’), which inhibits the CD4+CD25 effector T cells, was demonstrated to develop outside the thymus and peripheral blood (15,16). Adaptive Tregs are induced by different stimuli, including the presence of IL-10 and TGF-β; alike natural Tregs, peripheral Tregs are characterized by cytokine dependence (15,16).

Overexpression and increased activity of CD25+FOXP3+ Tregs, as well as a decreased function of CD8+ T cells, have been observed at the tissue level in melanoma metastases, and correlated with tumour progression (20,21). CD4+CD25+ Foxp3+ Tregs have not yet been extensively investigated at the tissue level, in primary cutaneous melanoma.

In this retrospective study, we analyzed CD4+/CD25+ FOXP3+ Tregs by immunohistochemistry in primary tumour samples obtained from 66 patients with cutaneous melanoma in the vertical growth phase and evaluated their correlation with tumour relapse.

Materials and methods

Cases. Archival tissue samples were obtained from the files of Pathological Anatomy - Department of Human Pathology and Oncology of the Siena University.

We examined 66 cases of vertical growth phase primary cutaneous melanomas, as defined by current histological criteria (22), from patients who underwent surgery between 1990 and 2000. Patients with a 5-year minimum follow-up were selected who did not receive any immunotherapy or chemotherapy before surgery. Melanoma stage was established according to the American Joint Committee on Cancer (Table I) (23).

All cases were revised by two pathologists (C.M., P.L.) and diagnosis of melanoma was confirmed in all cases, according to the current histological criteria (22). In all cases, melanomas were removed, with excisional margins 1 cm away from the tumour. Cases were grouped into two categories: group A, comprising of 35 cases that neither recurred nor metastasized, and group B, comprising of 31 cases that recurred locally, in the dermis and subcutis within the scar area. Clinical and pathological characteristics are summarized in Table I. The two groups were similar for main histological prognostic factors (i.e. melanoma thickness and level, mitotic rate, ulceration, regression, vascular/perineural invasion). Group A included 31 level IV, and 4 level V melanomas (median thickness: 2.2 mm; range: 1.3-4.2 mm). Group B included 29 level IV and 2 level V melanomas (median thickness: 2.1 mm; range: 1.2-4.4 mm).

Written informed consent was obtained before each patient was included in the study, that was approved by local ethics committees, and performed in accordance with the principles of the World Medical Association Declaration of Helsinki.

Immunohistochemical procedures. Tumour-infiltrating lymphocytes (TILs) were characterized in 4 µ-thick serial sections cut from formalin-fixed, paraffin-embedded, tissue specimens of the most representative tumour areas. Immunohistochemistry of deparaffinized sections was carried out for CD3, CD4, CD20, CD8, granzyme b, CD25 and FOXP3. CD3 (CD3 monoclonal antibody, Bio-Optica, Milan, Italy, dilution 1:1000) and CD4 (CD4 monoclonal antibody, 4ß12, Dako, dilution 1:100) antibodies were applied to sections for 60 min at room temperature, after antigen retrieval in Wcap buffer (pH 6.0, 98˚C, for 40 min), and after using the Ultravision detection system anti-polyvalent HRP (LabVision, Bio-Optica). Diaminobenzidine (Dako, Milan, Italy) served as chromogen.

Microwave pre-treatment and the Ultravision LP detection system AP polymer (Lab Vision) were used for CD20 (CD20 monoclonal antibody, clone L26, Neomarkers, BioOptica, dilution 1:150), CD8 (CD8 monoclonal antibody, CD8-144B clone, Dako, dilution 1:50) and granzyme b (granzyme b monoclonal antibody, GZBO1 clone, Bio-Optica, dilution 1:100); after incubation with the antibodies for 60 min at room temperature, staining was developed by using Fucsin (Dako) as chromogen. Anti-human CD25 (CD25 monoclonal antibody, Bio-Optica, dilution 1:100; trypsin pre-treatment) and FOXP3 (FOXP3 monoclonal antibody, Abcam, DBA, Milan, Italy; dilution 1:50, microwave pre-treatment) were used for double immunohistochemistry. Briefly, after antigen unmasking in Wcap, the Ultravision LP detection system AP polymer was used.

For nuclear staining, FOXP3 was applied for 60 min at room temperature, and Fucsin (Dako) was used as chromogen. For cytoplasmic staining, sections were put in 3% H2O2 for 60 min at room temperature, and Fucsin (Dako) was used as chromogen. Anti-human CD25 (CD25 monoclonal antibody, Bio-Optica, dilution 1:100; trypsin pre-treatment) and FOXP3 (FOXP3 monoclonal antibody, Abcam, DBA, Milan, Italy; dilution 1:50, microwave pre-treatment) were used for double immunohistochemistry. Briefly, after antigen unmasking in Wcap, the Ultravision LP detection system AP polymer was used.

For nuclear staining, FOXP3 was applied for 60 min at room temperature, and Fucsin (Dako) was used as chromogen. For cytoplasmic staining, sections were put in 3% H2O2 for 10 min. The ultravision detection system anti-polyvalent HRP was used; sections were then incubated with CD25, for 60 min at room temperature, and DAB was used as chromogen. Double immunohistochemistry for FOXP3 and CD4 was also performed, by following all the steps above as described for the single stains. For each case, a negative control was obtained by replacing the specific antibody with non-immune serum immunoglobulins at the same concentration of the primary antibody. All sections were counterstained with Harris hematoxylin, dehydrated in alcohol, cleared in xylene, and coverslipped. The slides were independently evaluated by two observers (C.M., P.L.).
evaluated in immunostained sections. Immunostained TILs were counted in serial sections and in at least 10 randomly-chosen high power fields (x40 objective and x10 eyepiece; 0.16 mm² per field), both at the tumour parenchyma, at its periphery (tumour-host interface), and at the tumour-stroma boundary. Ulcerated areas were avoided. When a radial growth phase was present, it was excluded from the counts, and only the vertical growth phase was evaluated. Numbers of labelled TILs both per 100 tumour cells (inside tumour parenchyma and at tumour periphery), and per 100 lymphocytes (at tumour-stroma boundary) were assessed. Quantification of the absolute numbers of cytotoxic lymphocytes was performed both on granzyme b- and CD8-stained sections. Quantification of absolute numbers of Tregs was performed both in FOXP3-CD25 and in FOXP3-CD4 double immunostains. As for quantification among TILs, for cytotoxic lymphocyte

Table I. Patient and tumour characteristics.

<table>
<thead>
<tr>
<th></th>
<th>All patients</th>
<th>Group A</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients</td>
<td>66</td>
<td>35</td>
<td>31</td>
</tr>
<tr>
<td>M age (R)</td>
<td>65 (48-77)</td>
<td>66 (50-77)</td>
<td>63 (48-72)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>36</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>Male</td>
<td>30</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>Localization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head</td>
<td>29</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>Extremities</td>
<td>22</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Trunk</td>
<td>15</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Type^</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALM</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>LMM</td>
<td>29</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>NM</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>SSM</td>
<td>31</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Level IV</td>
<td>60</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td>Level V</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Thickness-M(R)</td>
<td>2.2 (1.2-4.4)</td>
<td>2.2 (1.3-4.2)</td>
<td>2.1 (1.2-4.4)</td>
</tr>
<tr>
<td>Mitotic rate</td>
<td>5 (0-10)</td>
<td>5 (0-10)</td>
<td>4 (0-9)</td>
</tr>
<tr>
<td>Ulceration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>21</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>Absent</td>
<td>45</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>Regression (f,m,mr)</td>
<td>27 (13:f; 13:m; 1:mr)</td>
<td>12 (5:f; 6:m; 1:mr)</td>
<td>15 (8:f; 7:m)</td>
</tr>
<tr>
<td>Brisk LI</td>
<td>7</td>
<td>4</td>
<td>3^</td>
</tr>
<tr>
<td>VI, PnI</td>
<td>VI(60); PnI(7)</td>
<td>VI(31); PnI (3)</td>
<td>VI(29) PnI(4)</td>
</tr>
<tr>
<td>Metastases</td>
<td>5</td>
<td>0</td>
<td>5 (SnLN)</td>
</tr>
<tr>
<td>Stage^</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I B pT2a N0 M0</td>
<td>31</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>II A pT2b N0M0</td>
<td>24</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>II B pT4a N0 M0</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>III A pT2a pT3a N1a</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Recurrence^2</td>
<td>31</td>
<td>0</td>
<td>31</td>
</tr>
<tr>
<td>5-year survival (%)</td>
<td>66 (100%)</td>
<td>35 (100%)</td>
<td>29 (94%)^e</td>
</tr>
</tbody>
</table>

M(R), Median (range). ^ALM, acral lentiginous melanoma; LMM, lentigo maligna melanoma; NM, nodular melanoma; SSM, superficial spreading melanoma; Brisk LI, brisk lymphocytic infiltrate; LNM, lymph node metastatic; Regression: (f,m, mr) (focal, moderate, marked), see ref. 2. ^VI, vascular invasion; PnI, perineural invasion. ^All of the 3 patients developed visceral metastases during the last two years of follow-up. SnLN, sentinel lymph node. 2Stage according to the current American Joint Committee on Cancer staging system, see ref. 22. 3All melanomas recurred within two years; in 25 out of 31 cases recurrence occurred during the first year after surgical excision. 4Two patients developed visceral metastases and died of disease (40 and 57 months after surgery, respectively).
assessment, the percentage of CD8\(^+\) and granzyme b\(^+\) lymphocytes was calculated on the total number of TILs; for Tregs, the percentage of CD25\(^+\)FOXP3\(^+\) Tregs was assessed among CD4\(^+\) lymphocytes.

Reproducibility of all features was assessed by 2 independent observers (C.M., P.L.) in 6 cases (3 group A and 3 group B), by repeating counting procedures 3 times. The coefficient of intra- and interobserver correlation was always >0.9.

Statistics. Mean percentages + SD of immunostained TIL were calculated and compared in each group and between the two groups of patients by the non-parametric Kruskal-Wallis test. The correlation among variables in each group was studied by means of Pearson's correlation coefficient. The significance level was set at p<0.05.

Results

Histological examination revealed that TILs were sparse-to-moderate in 32 out of 66 cases. A heavy-to-moderate lymphocytic infiltrate was demonstrable in 34 out of 66 cases, in 27 cases (12, group A; and 15, group B) it was associated with focal/moderate features of intermediate regression (abundant pigment-laden macrophages, fibrosis, vessel proliferation), according to Barnhill \(\text{et al}\) (22). In 7 cases (4, group A; and 3, group B), there were brisk TILs, as defined by Clemente \(\text{et al}\) (1). In all cases, most TILs were at the tumour-stroma boundary. In the tumour parenchyma, they were more numerous at tumour periphery.

Immunohistochemical evaluation. In both groups, >90% of TILs expressed CD3, and most (90-99% among CD3\(^+\) TIL) were CD4\(^+\), whereas CD20 cells constituted a minority of cells (1-5%). With both CD4 FOXP3 and CD25 FOXP3 double staining, Treg nuclei were stained in red; their cytoplasm was brownish. Some representative cases are depicted in Figs. 1-3. Most Tregs were CD4\(^+\)/CD25\(^+\)FOXP3\(^+\), and the majority of the FOXP3\(^+\) cells were CD25\(^+\). In both groups, CD4/CD25 FOXP3\(^+\) cells were more numerous at tumour periphery, and admixed with lymphocytes, at the tumour-stroma boundary; in some cases they were also detectable in the epidermis. In most cases, when present inside the melanoma parenchyma, CD4/CD25 FOXP3\(^+\) cells were not associated with other lymphocytes; in many group B cases they were very close to tumour infiltrating macrophages.
In most cases, CD8⁺, granzyme b⁺ TILs, in both groups, were less numerous than CD4⁺/CD25⁺FOXP3⁺ cells; they were less frequently detectable in the melanoma parenchyma. The two groups did not show statistically significant differences in CD3⁺ and CD4⁺ percentage of lymphocytes. In each case, there were no statistically significant differences either between the absolute number of CD8⁺ and granzyme b⁺ TILs (p>0.05), or between the absolute number of CD25⁺FOXP3⁺ and CD4⁺FOXP3⁺ TILs (p>0.05). Therefore, the percentage of granzyme b⁺ lymphocytes on total TILs, and the percentage of CD25⁺FOXP3⁺ on total CD4⁺ TILs were used for cytotoxic and Treg cell percentage assessment, respectively.

Cytotoxic and Treg cell percentage did not significantly differ when comparing various histogenetic types in each group. There were no statistically significant differences between the absolute number of CD8⁺ and granzyme b⁺ TILs (p>0.05), or between the absolute number of CD25⁺FOXP3⁺ and CD4⁺FOXP3⁺ TILs (p>0.05). Therefore, the percentage of granzyme b⁺ lymphocytes on total TILs, and the percentage of CD25⁺FOXP3⁺ on total CD4⁺ TILs were used for cytotoxic and Treg cell percentage assessment, respectively.

In diagnostic reports, the intensity of TILs is evaluated and categorized as brisk, non-brisk, and absent (1). Brisk intratumoural T-cell infiltrates have been correlated with a low rate of tumour recurrence and increased patient survival in melanoma, as well as in other human cancers, although the results of these studies were contradictory (1,2,4-6). In diagnostic reports, the intensity of TILs is evaluated and categorized as brisk, non-brisk, and absent (1). Brisk intratumoural T-cell infiltrates have been correlated with a low rate of tumour recurrence and increased patient survival in melanoma, as well as in other human cancers, although the results of these studies were contradictory (1,2,4-6). In diagnostic reports, the intensity of TILs is evaluated and categorized as brisk, non-brisk, and absent (1). Brisk intratumoural T-cell infiltrates have been correlated with a low rate of tumour recurrence and increased patient survival in melanoma, as well as in other human cancers, although the results of these studies were contradictory (1,2,4-6). In diagnostic reports, the intensity of TILs is evaluated and categorized as brisk, non-brisk, and absent (1). Brisk intratumoural T-cell infiltrates have been correlated with a low rate of tumour recurrence and increased patient survival in melanoma, as well as in other human cancers, although the results of these studies were contradictory (1,2,4-6). In diagnostic reports, the intensity of TILs is evaluated and categorized as brisk, non-brisk, and absent (1). Brisk intratumoural T-cell infiltrates have been correlated with a low rate of tumour recurrence and increased patient survival in melanoma, as well as in other human cancers, although the results of these studies were contradictory (1,2,4-6). In diagnostic reports, the intensity of TILs is evaluated and categorized as brisk, non-brisk, and absent (1). Brisk intratumoural T-cell infiltrates have been correlated with a low rate of tumour recurrence and increased patient survival in melanoma, as well as in other human cancers, although the results of these studies were contradictory (1,2,4-6). In diagnostic reports, the intensity of TILs is evaluated and categorized as brisk, non-brisk, and absent (1). Brisk intratumoural T-cell infiltrates have been correlated with a low rate of tumour recurrence and increased patient survival in melanoma, as well as in other human cancers, although the results of these studies were contradictory (1,2,4-6). In diagnostic reports, the intensity of TILs is evaluated and categorized as brisk, non-brisk, and absent (1). Brisk intratumoural T-cell infiltrates have been correlated with a low rate of tumour recurrence and increased patient survival in melanoma, as well as in other human cancers, although the results of these studies were contradictory (1,2,4-6). In diagnostic reports, the intensity of TILs is evaluated and categorized as brisk, non-brisk, and absent (1). Brisk intratumoural T-cell infiltrates have been correlated with a low rate of tumour recurrence and increased patient survival in melanoma, as well as in other human cancers, although the results of these studies were contradictory (1,2,4-6). In diagnostic reports, the intensity of TILs is evaluated and categorized as brisk, non-brisk, and absent (1). Brisk intratumoural T-cell infiltrates have been correlated with a low rate of tumour recurrence and increased patient survival in melanoma, as well as in other human cancers, although the results of these studies were contradictory (1,2,4-6). In diagnostic reports, the intensity of TILs is evaluated and categorized as brisk, non-brisk, and absent (1). Brisk intratumoural T-cell infiltrates have been correlated with a low rate of tumour recurrence and increased patient survival in melanoma, as well as in other human cancers, although the results of these studies were contradictory (1,2,4-6). In diagnostic reports, the intensity of TILs is evaluated and categorized as brisk, non-brisk, and absent (1). Brisk intratumoural T-cell infiltrates have been correlated with a low rate of tumour recurrence and increased patient survival in melanoma, as well as in other human cancers, although the results of these studies were contradictory (1,2,4-6).
survival (1,2). However, melanoma progression is often seen in the presence of brisk TIL, as we also observed in three patients of group B.

Besides numbers and localization at the tumour site, immunophenotypic differences among TIL subsets, as well as impaired lymphoid cell differentiation and functions are relevant in local immune response (5,24). The detection of TILs in itself, is not always informative on the local immune response status and, therefore, might not be a reliable prognostic marker. There is a growing agreement on the necessity of characterizing TILs, as well as studying their functionality, for prognostic and therapeutic purposes (4,5,25,26). TIL functionality may be investigated through methods that are still indigenuous and hampered by practical problems, whereas their characterization is today facilitated by the existence of commercial antibodies. In our study, TIL immunophenotyping was informative and allowed for distinguishing cases that recurred (group B) from cases that did not (group A), after a 5-year follow-up.

In agreement with Hussein et al (4), we found that the majority of TILs were CD3+ (including CD4+ and CD8+ cells), with a negligible CD20+ component. In our experience, most TILs were CD3+CD4+, with granzyme b+ cytotoxic cells that constituted 1-10% and 1-9% of TILs in group A and in group B, respectively. This means that cytotoxic TILs were not determinant in contrasting tumour relapse in our cases. Groups A and B did not even differ in the percentages of CD4+ cells, that ranged from 90 to 99% of total CD3+ TILs in both groups. What significantly distinguished the two groups of patients was the percentage of Tregs, both among tumour cells and lymphocytes, as assessed after double immuno-staining with CD25 and FOXP3 antibodies. Lymphocytes bearing cytotoxic properties comprise two effector cell populations: CD3+CD8+ cytotoxic lymphocytes that become activated following recognition of tumour-specific antigens and require a proper MHC-1 complex, and CD3+CD8+ natural killer cells, that induce tumour cell death in absence of MHC-1 (7,27). We observed low percentage of cytotoxic TILs. This is in line with other investigations, that demonstrated a decrease of cytotoxic TILs in advanced cancer (28).

Among TILs, the subset of CD4+/CD25+/FOXP3+ Tregs mediate immune suppression through a cell-cell contact mechanism and inhibits the effects of cytotoxic TILs (14,16). The transcription factor FOXP3 specifically identifies a subset of CD4+/CD25+ Tregs, that represents a small fraction (5-10%) of the overall CD4+ T cell population and is essential for downregulating immune responses to both endogenous (self) and exogenous antigens (14). Originally identified in the peripheral blood and thymus, Treg cells have also skin homing properties (14,17), that implies their role in the local control of disease, and stimulates interest in their possible therapeutic ramifications (25). Abnormalities in number and functions of peripheral Tregs are recognized in some human autoimmune and inflammatory diseases (15).

In cancer, CD4+/CD25+ Tregs have been shown to be increased in the peripheral blood and in tumour-draining lymph nodes of patients, however, discordant results have been reported on their prognostic role (13). Treg numbers have been associated with an unfavourable prognosis in ovarian cancer (13,29), and with high tumour grade in glial neoplasms (30), whereas they were not found of prognostic value in anal squamous cell carcinoma (31), and, vice versa, were associated with improved survival rates in patients suffering from Hodgkin lymphoma (32). However, many studies on Tregs did not use specific markers, such as FOXP3, and few studies were performed at the tissue level, in which immune status may differ from the general one (21). Adaptive Tregs develop from both natural Tregs and CD25+ T cells under continuous antigen stimulation and in a cytokine (i.e. TGF-β, IL-2, IL-10, IL-4, IFN-γ)-dependent manner (16,18). Natural Tregs control autoimmune responses, whereas adaptive Tregs are involved in immune response control not only to self-antigens, but also to a wide variety of nonself-antigens (15).

Melanoma environment is a continuous source of antigens as well as cytokines, therefore ideal to the development and maintenance of adaptive Tregs. CD4+/CD25+/FOXP3+ TILs may be involved in thwarting the T-cell response against the tumour, and might therefore have a relevant role in local immune tolerance, allowing for uncontrolled melanoma growth and progression. We did not observe significant differences in cytotoxic TIL percentage between the two groups of patients. This is not surprising since Tregs are though to affect functionality of effector cells, is therefore impaired, despite the presence of the latter in tumour microenvironment (7). Investigation on cross-talk between Tregs and other cell types in the tumour habitat, could also be informative. Recently, mast cells have been demonstrated to be essential in mediating peripheral tolerance induced by CD4+/CD25+/FOXP3+ Tregs (33).

In our study, especially in group B patients, in many cases we observed CD4+/CD25+/FOXP3+ Treg cells very close to tumour-associated macrophages, that are a well-known source of cytokines, and usually correlated to a poor prognosis in advanced melanoma (27). Macrophages could also be involved in Treg-tumour homeostasis, however this observation needs further investigation. Although differences in CD25+/FOXP3+ Treg percentages between the two groups of our patients were significant, some overlapping results were registered, as observable by the range of reported values (Table II). It is known that the functionality of CD25+/FOXP3+ cells might depend on various factors, such as environmental agents and their proliferation status (35). Furthermore, the complexity of players in the immune response should be taken into consideration, and that there are also other non-FOXP3+ subsets of induced T cells, that can play a role in immune tolerance against melanoma antigens (26).

It has also been assumed that FOXP3 expression in humans, unlike mice, may not be specific for cells with a regulatory phenotype and may be only a consequence of their activation status (34). The double CD25+/FOXP3 stain is, therefore, mandatory for identifying cells with regulatory properties. Waiting for a more complete TIL characterization with commercial antibodies, and for less indaginous tests aiming at investigating CD25+/FOXP3+ Treg functionality, we think that, the immunohistochemical evaluation of CD25+/FOXP3+ cells is a practical and reliable approach in tissue biopsies. In humans, FOXP3 protein is detected as a doublet by immunoblot analysis: it has recently been demonstrated that both full-length FOXP3 and the splice variant forms of the protein are functional repressors of CD4+ T cell activation.
(35,36). This further supports the use of the commercially available antibodies for diagnostic purposes.

The relevance of Treg evaluation as a spy of local immune response status is also sustained by the evidence that they would exert a ‘dominant’ form of immune tolerance on many different cell types, such as natural killer and CD3+CD8+ effector cells (18). As we observed in our study, the evaluation of CD4+/CD25+FOXP3+ Tregs in tumour sections could be helpful in foreseeing melanoma behaviour: CD4+/CD25+FOXP3+ Tregs might represent a key marker for an immunosuppressive microenvironment contributing to tumour immune escape.

In our experience, CD25+FOXP3+ Tregs were associated with melanoma recurrence, also in three cases that showed brisk TILs. Although limited to a phase of tumour growth, our conclusions are consistent with those of an increasing brisk TILs. Although limited to a phase of tumour growth, with melanoma recurrence, also in three cases that showed melanoma, by using a panel of antibodies including CD8, granzyme b, CD4, CD25 and FOXP3. Prospective studies on larger series comprising tumours in various stages of disease and follow-up, are warranted to validate CD4+CD25+FOXP3+ Treg evaluation at the tissue level as a prognostic indicator in cutaneous melanoma.

Acknowledgements

This study was supported by grants from MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca), Italy.

References

