Decreased expression of hMLH1 correlates with reduced 5-fluorouracil-mediated apoptosis in colon cancer cells

HIDEYUKI FUJITA, JUN KATO, JOICHIRO HORII, KEITA HARADA, SAKIKO HIRAOKA, HIDENORI SHIRAHA, KOHSAKU SAKAGUCHI and YASUSHI SHIRATORI

Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan

Received June 14, 2007; Accepted July 27, 2007

Abstract. Patients with sporadic microsatellite instable colorectal cancers, in most of which the function of the hMLH1 mismatch repair gene is impaired, do not gain a survival benefit from 5-fluorouracil (5-FU)-based chemotherapy. However, the effect of hMLH1 on the cytotoxicity induced by 5-FU has not yet been sufficiently confirmed. In this study, we assessed the effect of hMLH1 on cytotoxicity and apoptosis induced by 5-FU using newly developed cell lines. We constructed two cell lines: SW480 (originally hMLH1-proficient), in which the expression of hMLH1 was reduced using a small interfering RNA (siRNA) technique, and HCT116 (originally hMLH1-deficient), in which the expression of hMLH1 can be regulated by doxycycline. Using these cell lines, a clonogenic survival assay, 4',6-diamidino-2-phenylindole (DAPI) staining and an Annexin-V assay were performed. Moreover, the incorporation of 5-FU into DNA was determined using tritium-labeled 5-FU. In both of our two cell lines, hMLH1-deficient cells exhibited approximately 2.4-fold clonal surviving fraction compared to hMLH1-proficient cells for 10 days after the administration of 5-FU. Additionally, hMLH1-deficient cells treated with 5-FU exhibited 34-45% less apoptosis than hMLH1-proficient cells according to the results of DAPI staining and Annexin-V assay. Furthermore, hMLH1-deficient cells treated with 5-FU exhibited an approximately 2-fold greater incorporation of 5-FU into DNA than control cells, suggesting that the recognition of 5-FU-incorporated DNA is impaired in hMLH1-deficient cells, resulting in reduced apoptosis. Our conclusions were that decreased expression of hMLH1 in colon cancer cells reduced the apoptosis induced by 5-FU, suggesting that hMLH1 is a key determinant of 5-FU chemosensitivity.

Introduction

Colorectal cancer (CRC) is one of the most common malignancies worldwide. The biological development of CRC involves genetic instability. Approximately 80-85% of CRCs develop through the chromosomal instability [also known as the microsatellite stable (MSS)] pathway. Meanwhile, another form of genetic instability correlated with the development of CRC is microsatellite instability (MSI), which is caused by the inactivation of a DNA mismatch-repair (MMR) gene, such as hMLH1, hMSH2, hMSH6, hPMS2 or hMSH3. Most sporadic CRCs with MSI are implicated in the epigenetic silencing of hMLH1 (1,2). In these tumors, the loss of the expression of hMLH1 due to methylation of the promoter region allows the occurrence of MSI (3-5).

MMR deficiency causes multiple errors in repetitive DNA sequences, such as mono- and dinucleotide repeats (6,7). In cases of MMR-deficient status, all nucleotide repeat sequences, including those in the coding region of the genome, are at risk of mutation. In particular, mutations in genes which encode for transforming growth factor (TGF)-β receptor type II, the insulin-like growth factor (IGF)-II receptor and the Bax gene have been reported to play a key role in the development of CRC with MSI (8-10). However, the functional significance of these genes is not always clear because of the very high mutation rate at the repetitive sequences in CRCs with MSI.

Previous studies have reported that improved survival was observed in patients with MSS tumors who received 5-fluorouracil (5-FU)-based chemotherapy (11-16), while such therapy did not extend the lives of patients with MSI tumors (17-19). This clinical result suggests that the microsatellite stable or unstable status of CRCs is an important determinant of 5-FU-based chemosensitivity. Alternatively, the loss of hMLH1 expression, and not of microsatellite status, may be responsible for reduced chemosensitivity.

In vitro, the role of MMR in drug cytotoxicity has been explored using methodologies with genetically matched cells possessing an altered MMR status. One commonly used system applies the hMLH1-deficient HCT116 human colon cancer cell line and a corrected clone (HCT116 3-6) into which a normal human chromosome 3 (which contains the hMLH1 gene) was introduced by microcell fusion (20). However, that system is problematic because the restored chromosome 3 also contains several vital oncogenes and tumor suppressor genes, such as RASSF1, TGF-β type II receptor and the von
Hippel-Lindau (VHL) tumor suppressor gene. In that system, 1 or some of such pivotal genes may have affected the results of experiments with HCT116 and HCT116 3-6, and the function of hMLH1 may not have been properly evaluated. For example, the RASSF1A isoform of RASSF1 overexpression is known to reduce in vitro colony formation and the tumorigenicity of cancer cell lines in vivo (21). On the other hand, VHL gene deletion frequently occurs in sporadic colon carcinoma. Because this deletion is not present in adenomas, the VHL gene may play a role in colonic carcinogenesis and represents a relatively late event in colon neoplasia progression (22,23). Additionally, the loss of TGF-β-mediated growth inhibition is one of the in vivo mechanisms through which TGF-β type II receptor inactivation contributes to the formation of colon cancer (24).

One study demonstrated that treatment with a demethylating agent, 5-aza-2'-deoxycytidine of hMLH-methylated SW48 cells, induced higher sensitivity to 5-FU (25). Even in that system, however, recovery of the expression of methylated gene products other than hMLH1 may have also occurred, and the results may have been affected. Thus, previous reports have failed to rigorously confirm the effect of hMLH1 protein on drug cytotoxicity.

Therefore, in order to precisely evaluate the function of the hMLH1 gene on drug cytotoxicity, we developed 2 cell lines in which only the expression of hMLH1 was regulated via small interfering RNA (siRNA) and the TetOff system. In the present study, we strictly assessed the effect of hMLH1 status on the cytotoxicity and apoptosis induced by 5-FU administration.

Materials and Methods

Plasmid construction. A plasmid vector encoding siRNA targeting hMLH1 (pSilencer-siMLH1) was constructed by annealing oligonucleotides 5'-GATCCGGTTCTAAGGGCTGAGCTGATGGAACTTTTTGAAA-3' and 5'-AGCTTTTCAAAAGGTTCACTAAGATGATGCTAAGGCGG-3', which were designed using online software (Invitrogen) to confirm the expression of hMLH1. pCEP4-hMLH1 plasmid was digested with NotI and the isolated fragment was inserted into pTRE2-hyg (Clontech, Heidelberg, Germany) that had been digested with NotI(pTRE2-hyg-HMLH1).

Cell culture and transfection. SW480 and HCT116 human colon cancer cell lines were obtained from American Type Cell Culture (Manassas, VA). The cells were maintained in RPMI1140 (SW480) (Sigma, St. Louis, MO) or McCoy's 5A (HCT116) medium (Invitrogen) supplemented with 10% fetal bovine serum. To establish SW480 cell lines stably expressing the siRNA targeting hMLH1 (SW480-siMLH1), SW480 cells were transfected with pSilencer-siMLH1 using a Gene Pulser Xcell electroporation system (Bio-Rad, San Diego, CA), following the manufacturer's instructions. During the electroporation procedure, SW480 cells were suspended with 1 ml of phosphate-buffered saline (PBS) in 4-mm-long cuvettes and electroporated with the following settings: 260 V, 1050 μF, and 5Ohm. The transfected cells were then maintained with a medium containing 1500 μg/ml of G418. Approximately 3 weeks after beginning the selection, >20 colonies were isolated and their extracts were screened by Western blotting using an antibody against hMLH1. We also generated negative control cells (SW480-siControl) in a similar manner using pSilencer neo Negative Control.

Next, we generated cell lines in which hMLH1 expression was regulated by a doxycycline-induced system (HCT116-HMLH1-TetOff). HCT116 cells were transfected with pTRE2-Neo (Clontech) using Effectene Transfection Reagent (Qiagen, Hilden, Germany). The selection for obtaining stable clones was initiated 2 days after transfection by adding 150 μg/ml G418 to the medium. Approximately 3 weeks after beginning the selection, >50 colonies were isolated and screened by transient transfection with pTRE2-Luc (Clontech) for the expression of luciferase in induced and non-induced cells (with or without 2 μg/ml of doxycycline). The clone with the lowest background and the highest induction of luciferase was then transfected with pTRE2-Hyg-hMLH1. The selection of stable clones was initiated 2 days after transfection by adding 200 μg/ml hygromycin to the medium. Approximately 3 weeks after beginning the selection, >50 colonies were isolated and their extracts were screened by Western blotting using the antibody against hMLH1.

Western blot analysis. The cells were seeded into 6-well plates and grown to near confluence. Cultured cells were washed twice with ice-cold PBS and lysed with lysis buffer [0.1 M Tris-HCl, 4% sodium dodecyl sulfate (SDS), 10% glycerol, 0.004% bromophenol blue and 10% 2-mercaptoethanol]. The lysates were collected and boiled for 5 min. Cell lysates were resolved by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to an Immobilon-P polyvinylidene difluoride membrane (Millipore, Bedford, MA). The membranes were blocked using Tris-buffered saline with Tween 20 (Sigma) (TBS-T) buffer containing 5% bovine serum albumin for 1 h. The membranes were then incubated with anti-hMLH1 antibody (clone G168-15; Pharmingen, San Diego, CA) or anti-hPMS2 antibody (clone A16-4; Pharmingen) overnight at 4°C. The membranes were then washed 3 times with TBS-T and the target proteins were
visualized by probing with the alkaline phosphatase-conjugated secondary antibody followed by development using a colorimetric method (Promega, Madison, WI). The expression levels of hMLH1 and hPMS2 were determined by densitometry using Scion Image, which is distributed by Scion Corporation (Frederick, MD), and reported as a ratio to actin, which was chosen as a housekeeping gene.

Reporter gene analysis of MSI. A detailed description of the procedures for reporter gene analysis of MSI was previously given by Wheeler et al (7). pCAR-OF reporter plasmid, a gift from Dr Bert Vogelstein (The Johns Hopkins University, Baltimore, MD), carries a hygromycin resistance gene as well as a β-galactosidase (β-gal) gene containing a 58-base pair out-of-frame poly(CA) tract at the 5' end of its coding region. Therefore, this reporter would not generate β-gal activity unless a frame-restoring mutation (i.e., insertion or deletion) arose following transfection. For the purposes of the present analysis, the SW480-siMLH1 cells and SW480-siControl cells were transfected with pCAR-OF plasmid by electroporation as described above. Cells then were selected with hygromycin for 6 weeks at 300 μg/ml. For β-gal staining, near confluent cultured cells were fixed with 0.5% glutaraldehyde in PBS for 10 min, rinsed twice at 37°C for 15 min in PBS containing 1 mM MgCl₂ and then stained at 37°C for ~6 h with a freshly prepared solution of PBS containing 1 mg/ml 5-bromo-4-chloro-3-indolyl-β-D-galactoside (X-Gal) (Sigma), 5 mM K₃Fe(CN)₆, 5 mM K₄Fe(CN)₆ and 1 mM MgCl₂. β-gal was expressed in blue staining cells and the expression was consistent with the MSI of transfected cells with the occurrence of frame slippage in the pCAR-OF vector. For image analysis, randomly selected images of optical fields were acquired with a charge-coupled device camera (Olympus, Tokyo, Japan) attached to an Olympus invertoscope.

Clonogenic survival assay. A clonogenic survival assay was performed by seeding 5x10³ cells/well into 20-mm 6-well plates. After 24 h, the growth medium was removed and a medium containing 5-FU was added at a concentration of 0, 1, 2.5 or 5 μM. The cells were then continuously treated at 37°C for 10 min, rinsed twice at 37°C for 15 min in PBS containing 1 mM MgCl₂, and then stained at 37°C for ~6 h with a freshly prepared solution of PBS containing 1 mg/ml 5-bromo-4-chloro-3-indolyl-β-D-galactoside (X-Gal) (Sigma), 5 mM K₃Fe(CN)₆, 5 mM K₄Fe(CN)₆ and 1 mM MgCl₂. β-gal was expressed in blue staining cells and the expression was consistent with the MSI of transfected cells with the occurrence of frame slippage in the pCAR-OF vector. For image analysis, randomly selected images of optical fields were acquired with a charge-coupled device camera (Olympus, Tokyo, Japan) attached to an Olympus invertoscope.

Quantification of 5-FU incorporated into DNA. 5-FU incorporated into DNA was quantified by measuring the radioactivity of tritium-labeled 5-FU. The cells were treated with 1 μM of tritium-labeled 5-FU spiked with 20 μCi. Three days later, the cells were washed 2 times with ice-cold PBS followed by incubation in 10% trichloroacetic acid for 30 min at 4°C. They were then washed in trichloroacetic acid and solubilized in 5% NaOH. Radioactivity was measured using a liquid scintillation counter (Beckman Coulter, Fullerton, CA). Radioactivities were adjusted based on the DNA content of cells which were similarly treated with non-labeled 5-FU.

Results

Construction of cell lines targeting hMLH1 expression control. In order to investigate the precise function of hMLH1 in the cytotoxic effects induced by 5-FU, we generated hMLH1 knockdown derivatives of SW480 colon cancer cells using the siRNA technique. The original SW480 cells were hMLH1-proficient MSS cancer cells. In contrast, the hMLH1 expression of the constructed derivatives, designated as SW480-siMLH1, was reduced to 1/20th of that of the control cells (SW480-siControl) (Fig. 1A). We also examined hPMS2 protein expression in our cell lines, because hMLH1 generally interacts with hPMS2 to form a heterodimer, hMutLα, and it has been reported that hPMS2 is unstable in the absence of its cognate partner (26). hPMS2 expression in SW480-siMLH1 cells was diminished to 1/4th of that of the control cells (Fig. 1A).

Next, we constructed hMLH1 protein-inducible HCT116-MLH1-TetOff cells using the TetOff expression system. The original HCT116 cells lacked chromosome 3, including the hMLH1 gene, and subsequently exhibited the MSI phenotype. The HCT116-MLH1-TetOff cells expressed hMLH1 protein in the absence of doxycycline in medium, while the addition of 2 μg/ml doxycycline to the medium reduced the protein expression to 1/10th (Fig. 1B). Additionally, in HCT116-MLH1-TetOff cells, hPMS2 expression was diminished in the presence of doxycycline (1/10th compared to the cells in an absence of doxycycline) (Fig. 1B).

In order to confirm whether the decreased expression of hMLH1 in SW480-siMLH1 cells could eliminate the function...
of MMR, a reporter assay was performed by transfecting pCAR-OF plasmid containing an out-of-frame β-gal coding region. The results indicated that β-gal was expressed in SW480-siMLH1 cells, suggesting that hMLH1 function had been lost and that MSI does occur in those cells. In contrast, none of the SW480-siControl cells expressed β-gal (Fig. 1C).

Cytotoxic effect of 5-FU based on hMLH1 expression. To examine the effect of hMLH1 protein expression on the cytotoxicity of 5-FU, a clonogenic survival assay was performed. As shown in Fig. 2A, SW480-siMLH1 cells were more resistant to 5-FU than the control cells. SW480-siMLH1 cells exhibited a 2.4-fold clonal survival fraction compared to
SW480-siControl cells in 5 μM of 5-FU. Nevertheless, these results could not rule out the possibility that other genes, including microsatellite regions, may have been mutated by impaired MMR thus affecting the cell survival results. Therefore, we also performed a similar assay using HCT116-MLH1-TetOff cells. Since HCT116 are originally cells with MSI, the comparison between HCT116-MLH1-TetOff cells in the absence and presence of doxycycline would highlight the effect of hMLH1 under conditions in which the effects of other genes would be completely eliminated. In these cells, the restoration of hMLH1 expression increased cytotoxicity by 5-FU administration (Fig. 2B). In other words, the loss of hMLH1 expression reduced the cytotoxicity, as happened in the case of SW480-siMLH1 cells. These results suggest that the impairment of hMLH1 function, and not other genes affected by impaired MMR, is mainly responsible for reduced cytotoxicity by 5-FU.

Apoptosis induced by 5-FU based on hMLH1 expression. We examined the relationship between apoptosis induced by 5-FU and hMLH1 expression. Apoptosis was assessed by 2 different assays. First, DAPI staining was performed (Fig. 3A). After 96 h of incubation in 5 μM of 5-FU, the typical morphological changes which indicate apoptosis were observed less frequently in SW480-siMLH1 cells than in control cells (average 5.6 vs. 10%) (Fig. 3B). In addition, HCT116-MLH1-TetOff cells without hMLH1 expression were more resistant to apoptosis than cells with hMLH1 expression (average 12.2 vs. 21.5%) (Fig. 3C).

To confirm this result, an Annexin-V apoptosis assay was also performed (Fig. 4A and B). In the present analysis, apoptotic cells were evaluated at 5 μM of 5-FU for 96 h. SW480-siMLH1 cells were less frequently sorted into early apoptotic fraction than the control cells (average 12.4 vs. 18.5%) (Fig. 4C). Similar results were obtained in the HCT116-MLH1-TetOff cells without and with hMLH1 expression (average 17.7 vs. 28%) (Fig. 4D). These results suggest that the loss of hMLH1 expression definitely induces resistance to apoptosis induced by 5-FU.

Difference in 5-FU incorporated into DNA according to hMLH1 status. One of the major mechanisms of 5-FU-mediated cytotoxicity is the incorporation of 5-FU metabolites into cellular DNA (27). To determine the effect of hMLH1 status on the incorporation of 5-FU metabolites, we measured the radioactivity of cells treated with tritium-labeled 5-FU using SW480-siMLH1 and SW480-siControl cells. In this experiment, SW480-siMLH1 cells exhibited 2-fold greater radioactivity than SW480-siControl cells, suggesting that the hMLH1-mediated MMR system recognizes 5-FU metabolites, resulting in the prevention of incorporation or the elimination of 5-FU metabolites.

Discussion

Clinical investigations have revealed that CRCs with MSI are more resistant to 5-FU-based chemotherapy than those with MSS (11-16). However, it remains unclear why MSI cancer is resistant to 5-FU, despite the improved survival rate it confers. There are a number of challenges in elucidating the biological characteristics of MSI cancer. However, although most MSI cancers are caused by the loss of expression of hMLH1 protein, all of the in vitro systems used to date have failed to distinguish whether hMLH1 is truly responsible or whether other mechanisms, affected by MMR deficiency, may be at work. The commonly used HCT116-3-6 cells have failed to rule out the effect of other genes on chromosome 3 (28-30) and the results recently reported in a study using a demethylating agent may have also been affected by demethylated genes besides hMLH1 (25).

In the present study, we strictly assessed the effect of hMLH1 status on cytotoxicity and apoptosis induced by 5-FU administration by using two newly developed cell lines: SW480 (originally hMLH1-proficient), in which the expression of the siRNA targeted to hMLH1 reduced the expression of hMLH1, and HCT116 (originally hMLH1-deficient), in which the expression of hMLH1 can be tightly regulated by doxycycline with the help of the TetOff system.
Our results indicate the precise effect of hMLH on 5-FU cytotoxicity and help to clarify the mechanism of resistance of this agent in MSI cancers.

One of the two cell lines, SW480-siMLH1 cells, was derived from MMR-proficient SW480 cells. The induction of 5-FU resistance by the reduction of hMLH1 expression in these cells directly indicated that the loss of hMLH1 was responsible for 5-FU resistance. In these cells, however, the microsatellite phenotype may have been changed to MMR-deficient, as indicated by the reporter gene assay. Therefore, other genes affected by MMR-deficient status (e.g., genes including a microsatellite region) may have affected the results. Another cell line, HCT116-MLH1-TetOff cells, was of great use in solving this problem. HCT116 cells were originally MMR-deficient and the recovery of MMR by the induction of hMLH1 expression would not affect the function of genes other than those with which hMLH1 directly interacts. Therefore, the fact that similar results were obtained in both of these 2 cell lines confirms that the loss of hMLH1 expression, but not other genes affected by MMR-deficiency, is responsible for resistance to 5-FU.

Moreover, we showed that apoptosis is less likely to occur in hMLH-deficient cells. A previous report indicated that there were no differences in the apoptotic effects of fluorodeoxyuridine, a 5-FU derivative metabolized by thymidine phosphorylase, between HCT116 and HCT116 3-6 cells (29). However, as indicated above, the system used in that study was problematic in its evaluation of hMLH1 status. Our 2 different assays indicated that the loss of hMLH1 expression reduced the apoptotic effects of 5-FU, suggesting that the enhanced cytotoxic effect of 5-FU brought about by the expression of hMLH1 is largely due to an increase in apoptosis. These results are consistent with a previous study, which showed that overexpression of hMLH1 induced apoptosis (31). In the apoptotic pathway induced by 5-FU, hMLH1 is likely to be involved in the recognition of misincorporated DNA because it has been proven that a heterodimeric complex of MutL-related proteins (hMLH1/hPMS2) interacts with the MutS-related proteins (hMSH2/hMSH6 or hMSH2/ hMSH3)-related proteins that have already bonded to mispaired bases (7). With respect to this point, our final experiment is informative (Fig. 5). The loss of hMLH1 may have induced the impairment of the recognition of 5-FU metabolites incorporated into DNA, the impossibility of inducing apoptosis and the subsequent accumulation of 5-FU metabolites in living cells. Thus, our results indicate that the loss of hMLH1 expression is a key determinant in impaired misincorporated DNA recognition and reduced apoptosis in treatment with 5-FU, resulting in insensitivity to 5-FU-based chemotherapy.

The p53 tumor suppressor plays an important role in the apoptosis pathway in the treatment of DNA-damaging agents. p53 has been shown to directly regulate the expression levels...
of Bax (32), and both p53 and Bax have been shown to be important determinants of the cellular response to chemotherapeutic agents (33). In vitro analysis using colon cancer cells has revealed that disruption of p53 induces resistance to 5-FU (33-35). Additionally, clinical investigations have shown that the overexpression of p53 in colon cancer is correlated with resistance to 5-FU (36-38). However, this observation seems to contradict our results and those of previous reports.

Figure 4. Annexin-V apoptosis assay. After incubation with 5-FU (5 μM) for 96 h, cells were washed and suspended in 85 μl Annexin-V-FITC binding buffer containing 5 μl propidium iodide (PI) and 10 μl Annexin-V-FITC. Fifteen min after incubation at room temperature in the dark, the suspension was diluted in 400 μl Annexin-V-FITC binding buffer. Fluorescence was measured using a FACS Caliber flow cytometer within 1 h for SW480-sMLH1 and SW480-siControl cells (A) or HCT116-MLH1-TetOff cells with and without doxycycline (B). The cells sorted at the Annexin-V+/PI- fraction (bottom right quadrant) were consistent with those with early apoptotic status. The means and standard errors for the proportion of early apoptotic cells were derived from at least 3 independent experiments (C, D).
may be related to the impairment of recognition of 5-FU-resistance to 5-FU through the loss of hMLH1 expression may be more important than p53. Moreover, the induction of hMLH1 is a key determinant of 5-FU chemosensitivity and them, examined the differences in cytotoxicity and apoptosis induced by 5-FU and, particularly, in the apoptosis induced by 5-FU, which interacts with factors that participate in mismatch recognition (39), may be useful in elucidating this problem. In conclusion, we constructed cell lines in which only hMLH1 expression status. Since clinical investigations have indicated that patients with MSS cancer are more sensitive to 5-FU than those with MSI cancer (17-19), hMLH1 seems to correlate more with 5-FU sensitivity than with p53 status. This result suggests that hMLH1 may be a suitable target for new anti-cancer drugs and future gene therapies. For example, demethylating agents could be a candidate for drugs against MSI cancers with methylated hMLH1.

The present results, that cells without hMLH1 expression are more resistant to 5-FU than cells with hMLH1 expression, are consistent with the results of previous molecular and clinical studies (17-19,28-30). Specifically, we have clearly elucidated that hMLH1 expression, and not other genes in chromosome 3 or other genes affected by MMR status, is truly responsible for 5-FU sensitivity. However, further investigation is required to clarify how hMLH1 is involved in the apoptosis induced by 5-FU and, particularly, in the recognition of 5-FU incorporated into DNA. Knocking out other MMR genes, such as hMSH2, hMSH6, hPMS2 and hMSH3, or proliferating cell nuclear antigen, which interacts with factors that participate in mismatch recognition (39), may be useful in elucidating this problem.

In conclusion, we constructed cell lines in which only hMLH1 protein expression was strictly regulated and, using them, examined the differences in cytotoxicity and apoptosis according to hMLH1 expression status. Our results suggest that hMLH1 is a key determinant of 5-FU chemosensitivity and may be more important than p53. Moreover, the induction of resistance to 5-FU through the loss of hMLH1 expression may be related to the impairment of recognition of 5-FU-incorporated DNA. In clinical settings, hMLH1 could serve not only as a biomarker that predicts sensitivity to 5-FU-based chemotherapy, but also as a molecular target in future anti-cancer therapies.

References