Abstract. Ewing's sarcoma family of tumors (ESFT) is comprised of highly malignant bone and soft tissue tumors in children and young adults. Despite intensive treatments for patients with ESFT, disease which presents with metastatic spread or relapses after primary treatment remains incurable in the majority of cases, indicating the importance of efforts to develop new treatment modalities, including immunotherapy. The present study was designed to examine the expression profile of papillomavirus binding factor (PBF), which we previously defined as an osteosarcoma-associated antigen, and its prognostic significance for patients with ESFT. Biopsy specimens from 20 ESFT were stained with an anti-PBF antibody. Survival was estimated using Kaplan-Meier plots and the prognostic significance of several variables, including PBF expression status, on disease-free and overall survival was determined by univariate analysis using the log-rank test. Of 20 specimens, 18 (90%) reacted positively to the anti-PBF antibody. Fifteen specimens (75%) were graded as PBF overexpression. Of the 11 variables analyzed, stage III disease, inadequate surgical margins and PBF overexpression were significantly associated with decreased disease-free and overall survival. None of the other variables, including age, gender, origin of tumor, tumor site or levels of LDH, ALP, CRP and ESR, showed any significant association. These findings indicate that the overexpression of PBF is a factor indicative of poor prognosis in ESFT. PBF may also serve as a putative target antigen in immunotherapy for patients with ESFT that have a poor prognosis and PBF overexpression.

Introduction

Ewing's sarcoma family of tumors (ESFT) is comprised of highly malignant bone and soft tissue tumors in children and young adults (1). Although systemic adjuvant chemotherapy has significantly improved the prognosis for patients with ESFT, disease which presents metastatic spread or relapses after primary treatment remains incurable in the majority of cases (2,3).

After a nearly 30-year interval from the initial immunotherapeutic trials for osteosarcoma (4,5), immunotherapy has recently re-emerged as a targeted therapy for bone and soft tissue sarcomas, including ESFT (6,7). In a clinical trial with ESFT patients, peptides derived from the junction regions of EWS-FLI1 fusion genes were used as ESFT-specific vaccines (6). However, clinical response was seen in only 1 of the 12 patients enrolled, suggesting the importance of finding further efficacious antigens and of developing antigenic peptide vaccines (8).

Recently, papillomavirus binding factor (PBF) was identified as an autologous cytotoxic T-lymphocyte-defined osteosarcoma antigen (9). It was originally defined as a transcriptional regulator of genomic DNA of human papillomavirus type 8 (10). The antigenic and oncolgic roles of PBF in ESFT remain uncertain. In this study, with the aim of gaining basic information on these aspects of PBF, we examined its expression in 20 cases of ESFT and analyzed its prognostic significance.

Materials and methods

This study was approved according to institutional guidelines for the use of human subjects in research. Patient specimens were analyzed after informed written consent was obtained from the patients or their families.

Patients and samples. Between 1979 and 2005, 20 consecutive patients with ESFT were treated at Keio University hospital. The clinical picture is summarized in Table I. There were 12 male and 8 female patients, with an average age at diagnosis of 23.9 years (range, 1-63 years). Twelve tumors arose from bone and the remaining 8 from soft tissue. Eight tumors were located in the trunk and 13 in the extremities. Fusion genes, including
EWS/ERG, EWS/ETV1 and EWS/E1AF, were determined by RT-PCR (11) in 9 of the 11 cases for which frozen biopsy specimens were available. According to Enneking's surgical stage (12), 16 patients were in stage IIB and 4 in IIIB. Treatment consisted of chemotherapy and surgery for 6, chemotherapy, surgery, and radiotherapy for 13, and chemotherapy and radiotherapy for 1. The chemotherapy protocols used were VAC (13), A-VAC (14), CYVADIC (15), T11 (16) and KS1, which is a modified protocol of New A3 (17). Radiotherapy (50-60 Gy) was instituted postoperatively. The average follow-up period after diagnosis was 78.4 months (range, 11-250 months).

Immunohistochemistry. Polyclonal antibody against PBF was generated previously (9). Formalin-fixed paraffin-embedded sections of biopsy specimens were boiled for 20 min in a microwave oven for antigen retrieval. Sections were blocked with 1% non-fat dry milk and stained with streptavidin-biotin-complex (Nichirei), followed by hematoxylin staining as previously described (9). The reactivity of the anti-PBF polyclonal antibody was determined by staining the nuclei. The expression status of PBF was estimated based on the number of tumor cells according to Ahmed et al (18) (Fig. 1): the presence of ≤5% of positively-stained tumor cells was represented by a minus (-), 6-25% by a plus (+) and 26-60% by ++. Overexpression, a number of positive tumor cells >60%, was represented by +++.

Clinicopathological analysis. Survival was estimated using Kaplan-Meier plots. Univariate analysis with the log-rank test

Table I. Clinical characteristics and expression status of PBF in patients with ESFT.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (years)</th>
<th>Gender</th>
<th>Location</th>
<th>Stage</th>
<th>Fusion gene</th>
<th>Treatment</th>
<th>PBF status</th>
<th>Event-free survival (mos)</th>
<th>Overall survival (mos)</th>
<th>Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone tumor</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>M</td>
<td>Right tibia</td>
<td>IIB</td>
<td>ND</td>
<td>Chx (VAC) + Amp + Rx</td>
<td>++</td>
<td>179</td>
<td>179</td>
<td>CDF</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>F</td>
<td>Right femur</td>
<td>IIB</td>
<td>ND</td>
<td>Chx (A-VAC) + Amp + Rx</td>
<td>-</td>
<td>174</td>
<td>174</td>
<td>CDF</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>M</td>
<td>Right humerus</td>
<td>IIB</td>
<td>ND</td>
<td>Chx (A-VAC) + WE + Rx</td>
<td>+</td>
<td>250</td>
<td>250</td>
<td>CDF</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>M</td>
<td>Left tibia</td>
<td>IIB</td>
<td>ND</td>
<td>Chx (CYVADIC) + WE + Rx</td>
<td>+++</td>
<td>166</td>
<td>166</td>
<td>CDF</td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>M</td>
<td>Thoracic spine</td>
<td>IIB</td>
<td>EWS/ERG</td>
<td>Chx (T11) + ME + Rx</td>
<td>+++</td>
<td>8</td>
<td>45</td>
<td>DOD</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>M</td>
<td>Sacrum</td>
<td>IIB</td>
<td>ND</td>
<td>Chx (T11) + WE + Rx</td>
<td>++</td>
<td>99</td>
<td>99</td>
<td>CDF</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>F</td>
<td>Left tibia</td>
<td>IIB</td>
<td>EWS/FLI-1</td>
<td>Chx (KS-1) + WE</td>
<td>+++</td>
<td>0</td>
<td>16</td>
<td>DOD</td>
</tr>
<tr>
<td>8</td>
<td>22</td>
<td>F</td>
<td>Right fibula</td>
<td>IIB</td>
<td>EWS/FLI-1</td>
<td>Chx (KS-1) + WE</td>
<td>+++</td>
<td>108</td>
<td>108</td>
<td>CDF</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>M</td>
<td>Left 5th rib</td>
<td>IIB</td>
<td>EWS/FLI-1</td>
<td>Chx (KS-1) + WE + Rx</td>
<td>+++</td>
<td>105</td>
<td>105</td>
<td>CDF</td>
</tr>
<tr>
<td>10</td>
<td>18</td>
<td>M</td>
<td>Right fibula</td>
<td>IIB</td>
<td>EWS/FLI-1</td>
<td>Chx (KS-1) + WE + Rx</td>
<td>+++</td>
<td>7</td>
<td>21</td>
<td>DOD</td>
</tr>
<tr>
<td>11</td>
<td>24</td>
<td>M</td>
<td>Left tibia</td>
<td>IIB</td>
<td>EWS/FLI-1</td>
<td>Chx (KS-1) + WE + Rx</td>
<td>-</td>
<td>15</td>
<td>15</td>
<td>CDF</td>
</tr>
<tr>
<td>12</td>
<td>23</td>
<td>M</td>
<td>Pelvis</td>
<td>IIB</td>
<td>ND</td>
<td>Chx (KS-1) + Rx</td>
<td>+++</td>
<td>0</td>
<td>17</td>
<td>DOD</td>
</tr>
<tr>
<td>Soft tissue tumor</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>29</td>
<td>M</td>
<td>Right thigh</td>
<td>IIB</td>
<td>EWS/FLI-1</td>
<td>Chx (KS-1) + ILE + Rx</td>
<td>+++</td>
<td>0</td>
<td>12</td>
<td>DOD</td>
</tr>
<tr>
<td>14</td>
<td>63</td>
<td>F</td>
<td>Paraspine</td>
<td>IIB</td>
<td>ND</td>
<td>Chx (KS-1) + ILE + Rx</td>
<td>+++</td>
<td>0</td>
<td>71</td>
<td>DOD</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>F</td>
<td>Right fibula</td>
<td>IIB</td>
<td>EWS/FLI-1</td>
<td>Chx (KS-1) + ME + Rx</td>
<td>+++</td>
<td>9</td>
<td>14</td>
<td>DOD</td>
</tr>
<tr>
<td>16</td>
<td>56</td>
<td>F</td>
<td>Right forearm</td>
<td>IIB</td>
<td>ND</td>
<td>Chx (CYVADIC + KS-1) + WE</td>
<td>+++</td>
<td>0</td>
<td>11</td>
<td>DOD</td>
</tr>
<tr>
<td>17</td>
<td>7</td>
<td>M</td>
<td>Paraspinal cord</td>
<td>IIB</td>
<td>Not detected</td>
<td>Chx (KS-1) + ME</td>
<td>+++</td>
<td>14</td>
<td>16</td>
<td>DOD</td>
</tr>
<tr>
<td>18</td>
<td>11</td>
<td>F</td>
<td>Paraspinal cord</td>
<td>IIB</td>
<td>EWS/FLI-1</td>
<td>Chx (KS-1) + ILE + Rx</td>
<td>+++</td>
<td>17</td>
<td>22</td>
<td>DOD</td>
</tr>
<tr>
<td>19</td>
<td>35</td>
<td>M</td>
<td>Left femur</td>
<td>IIB</td>
<td>ND</td>
<td>Chx (KS-1) + WE</td>
<td>+++</td>
<td>126</td>
<td>126</td>
<td>CDF</td>
</tr>
<tr>
<td>20</td>
<td>36</td>
<td>F</td>
<td>Right upper arm</td>
<td>IIB</td>
<td>Not detected</td>
<td>Chx (KS-1) + WE</td>
<td>+++</td>
<td>101</td>
<td>101</td>
<td>CDF</td>
</tr>
</tbody>
</table>

*Stage was determined according to Enneking's surgical staging system. ND, not determined; Chx, chemotherapy; Rx, radiotherapy; ILE, intralesional resection; ME, marginal excision; WE, wide excision; CDF, continuous disease free; DOD, death of the disease.*
(19) was used to determine the prognostic significance of the following variables for disease-free and overall survival: age (≥30 or <30), gender (female or male), tumor site (trunk or limb), origin of tumor (bone or soft tissue), stage (I, II or III), laboratory parameters (within or higher than normal range), surgical margin (adequate or inadequate) and PBF expression status (-, +, ++ or +++). Laboratory parameters included LDH, alkaline phosphatase (ALP), C-reactive protein (CRP) and the erythrocyte sedimentation rate (ESR) at 1 h. Analysis of the surgical margins was performed in 16 stage IIB patients. Wide excision and amputation were regarded as adequate margins, whereas intralesional and marginal excision were regarded as inadequate. A probability of <0.05 was considered to be statistically significant.

Results

*PBF expression in ESFT.* To determine the expression profiles of PBF in ESFT, we stained 20 ESFT biopsy specimens with anti-PBF antibody. Of these, 18 (90%) reacted positively to the anti-PBF antibody where the nuclei of tumor cells were stained (Fig. 1 and Table I). Two specimens were grade ++ and 1 was +. Fifteen specimens (75%) were graded as +++, indicating PBF overexpression.

*Prognostic significance of PBF expression in ESFT.* We then analyzed the prognostic significance of several variables, including the overexpression of PBF (grade +++). Overall survival rates of the 20 patients with ESFT were 53.1 and
47.8% at 5 and 10 years, respectively (Fig. 2). Of the 11 variables analyzed, stage III, an inadequate surgical margin and PBF overexpression were significantly associated with decreased disease-free and overall survival (Fig. 3 and Table II). Of note, the overall survival of the 15 patients with PBF overexpression was 33.3% at 10 years, whereas 5 patients remained continuously disease free during the entire follow-up period. None of the other variables, including age, gender, origin of tumor, tumor site and levels of LDH, ALP, CRP and ESR, showed a significant association to disease-free or overall survival.

Discussion

By staining 20 biopsy specimens of ESFT treated at a single institute with an antibody against PBF we found i) that PBF was expressed in 18 ESFT specimens (90%), including 15 specimens (75%) with grade +++ overexpression, and ii) that PBF overexpression was significantly associated with the decreased disease-free and overall survival of patients. These findings indicate that the overexpression of PBF is a factor of poor prognosis for ESFT. PBF, which was originally defined as an osteosarcoma-associated antigen (9), may also serve as a putative target antigen in immunotherapy for patients with ESFT and PBF overexpression, which confers a poor prognosis.

Compared to malignant melanoma and epithelial cancers, there is a marked delay in the identification of tumor-associated antigens in bone and soft tissue sarcomas (7,8). In ESFT, antigens proven to have specific T cell responses have been limited to EWS-FLI1 fusion gene products (6,20,21). More recently, cancer-testis antigens (also termed cancer-germline genes) were defined in 11 of 18 ESFT specimens and included MAGE-A3, A4, A6, A10, A12, C2 and GAGE-1, -2 and -8 (22). However, their expression levels were lower than those of other sarcomas, including osteosarcoma and rhabdomyosarcoma (22).
In conclusion, the present analysis serves as a pilot study showing the prognostic significance of PBF for patients with ESFT. Large-scale analyses need to be conducted to verify the present findings if PBF-targeted immunotherapy for patients with ESFT is to be developed.

Acknowledgments

This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant No. 16209013 to N.S.), by Practical Application Research from the Japan Science and Technology Agency (Grant No. H14-2 to N.S.), by the Ministry of Health, Labour and Welfare (Grant No. H17-Gann-Rinsyo-006 to T.W.), by the Postdoctoral Fellowship of the Japan Society for the Promotion of Science (Grant No. 02568 to T.T.) and by the Northern Advancement Center for Science and Technology (Grant No. H18-Waka-075 to T.T.). The authors thank Soichi Narutomi for his technical support.

References


