The progression of gliomas is associated with cancer stem cell phenotype

DOO-SIK KONG1, MI HYUN KIM1, WOONG-YANG PARK2, YEON-LIM SUH3
JUNG-IL LEE1, KWAN PARK1, JONG HYUN KIM1 and DO-HYUN NAM1

1Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine;
2Department of Biochemistry, Seoul National University, School of Medicine; 3Department of Pathology,
Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Received September 27, 2007: Accepted November 9, 2007

Abstract. Since cancer stem cells in brain tumors were introduced, there have been few explanations regarding the role of cancer stem cells in the progression of glioma. Here, we investigated their major molecular changes in tumor progression in relation to the stem cell subpopulation. Using 12 surgical specimens of gliomatosis cerebri (GC) in the early and advanced stages, we measured the expression of a panel of cell proliferation, microvessel density, microvessel areas, angiogenic factors and their associated receptors. In addition, expression of neural stem cell markers and associated cytokines were examined in tumor tissues by quantitative real-time RT-PCR. Comparing the biological characteristics between the initial infiltrating lesions (n=7) and progressed lesions (n=5), Sox2 and Musashi-1 were expressed in the tumor tissue at an early and a progressed state. Contrary to the early infiltrative phase representing angiogenesis-independent growth, GC with progression showed that nestin (+), PCNA (+) cells and total vessel area (angioectasia) were markedly increased with a higher expression of proangiogenic molecules and their receptors. These results suggest that tumor progression is mediated by cancer stem cells and cross-talk of cancer stem cells along with their environment and are closely associated with angiogenesis-dependent progression and -independent growth.

Introduction

Recent studies have identified that tumor cell subpopulations might be responsible for tumor initiation (1-3), though little is known about the mechanism that contributes to the acceleration of tumor progression (4). In general, tumor progression is known to require angiogenesis (4-6). Tumor progression, so-called cancer dedifferentiation is accelerated by unknown mechanisms giving rise to clinical deterioration. Once it begins to progress, tumor progression leads to robust proliferation with an emerging enhancement and has eventually shortened the survival below one or two years.

Gliomatosis cerebri (GC) is a rare variant of glioma, characterized by a highly diffuse infiltrative pattern with the preservation of the normal architecture (7-11), while glioblastomas (GBMs) are the most common brain tumor and highly vascular tumor. GC is considered to be a lesion of intermediate malignancy in the progression of diffuse astrocytoma to GBMs. These tumors coopt the host vasculature without signs of angiogenesis and are present as an invasive growth. GC shares common characteristics with neural stem cells, in that they show migratory behavior, diversity of progeny and have a proliferative potential. However, serial follow-up images revealed that new enhancement, mass formation and necrotic portion emerged, which clinically implied that an initial angiogenesis-independent growth pattern had shifted into an angiogenesis-dependent phenotype.

Here, in an attempt to determine whether cancer stem cells are the driving force in tumor progression, we investigated their major phenotypic changes in tumor progression in relation to the stem cell subpopulation.

Materials and methods

Patients and specimen collection. Among the 45 patients who were diagnosed with GC at our institute between January 1999 and December 2004, we analyzed the clinical factors associated with tumor progression and the overall survival. We were able to obtain adequate tumor tissues from 12 tissue specimens after cytoreductive surgery among the cohort. These archival histopathological materials yielded tumor tissue of sufficient quality in 7 GCs at the early stage and 5 GCs following rapid progression. Cell proliferation, microvessel density and microvessel areas were analyzed by immunohistochemistry (PCNA and CD31). In an attempt to determine a potential mechanism for tumor progression, we...
measured the expression of a panel of angiogenic factors and their receptors (VEGF, EGF, bFGF, PDGF and their receptors).

Immunohistochemical study. A representative paraffin block of formalin-fixed tumor tissues from 12 patients was selected. Brain tumor tissues were fixed in 4% paraformaldehyde and were paraffin-embedded. Sections (4-μm thick) were deparaffinized with xylene and rehydrated through a series of graded alcohols. Endogenous peroxidase activity was blocked by incubation (15 min) in 0.3% H2O2 in methanol. Slides were stained with a primary antibody overnight at 4˚C. Vertical and horizontal sections were stained positive for CD31 and the presence of a lumen was required for scoring as a microvessel. A microvessel was defined as a discrete cluster or single cell stained positive for CD31 and its substitution with an irrelevant mouse monoclonal antibody. DAB (3,3-diaminobenzidine hydrochloride containing 0.08% hydrogen peroxide) was used as a chromogen to visualize the peroxidase activity. For double immunofluorescent visualization, secondary antibodies Alexa 488 (red-colored) and Alexa 594 (green-colored) (Jackson ImmunoResearch) were used. In representative areas of the tumor tissue, positive tumor cells were determined and scored in a semiquantitative fashion: - , no positive cells; +, weak immunoexpression; ++, moderate immunoexpression; ++++, strong immunoexpression.

Table I. Immunohistochemistry findings at the pre- and post-progression stages in gliomatosis cerebri.

<table>
<thead>
<tr>
<th>No.</th>
<th>Nestin</th>
<th>O4</th>
<th>GFAP</th>
<th>CD133</th>
<th>Sox2</th>
<th>PCNA</th>
<th>CD31</th>
<th>VEGF</th>
<th>PDGFA</th>
<th>PDGFB</th>
<th>PDGFR-α</th>
<th>PDGFR-β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early stage</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>0</td>
<td>++</td>
<td>0</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>T2</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>T3</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>ND</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+++</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>T4</td>
<td>+</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>0</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>T5</td>
<td>0</td>
<td>+</td>
<td>+++</td>
<td>ND</td>
<td>+</td>
<td>+++</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>T6</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>ND</td>
<td>ND</td>
<td>+</td>
<td>+</td>
<td>+++</td>
<td>++</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T7</td>
<td>0</td>
<td>++</td>
<td>+++</td>
<td>ND</td>
<td>0</td>
<td>++</td>
<td>ND</td>
<td>0</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Advanced stage</td>
<td></td>
</tr>
<tr>
<td>T8</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>ND</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>T9</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>T10</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>T11</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>ND</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>T12</td>
<td>+++</td>
</tr>
</tbody>
</table>

Positive tumor cells were determined and scored in a semiquantitative fashion: 0, no positive cells; +, weak immunoexpression; ++, moderate immunoexpression; ++++, strong immunoexpression; ND, not done.

RT-PCR and quantitative real-time RT-PCR. The first strand cDNA was synthesized from 1 μg of total RNA using reverse transcriptase and 1 μM of oligo-dT primers like PROM1 (sense, CTG GGG CTG CTG TTT ATT ATT CTG; antisense, ACG CCT TGT CCT TGG TAG TGT TG), SOX2 (sense, CAG GAG AAC CCC AAG ATG C; antisense, GCA GCC GCT TAG CCT CTG), NES (sense, TGG CTC AGA GGA AGA GTC TGA; antisense, GCC ATT CAT ATG CTC TGA), MSI1 (sense, GCC CAA GAT GGT GAC TCG; antisense, ATG GCC TCG TCC ACC TTC), and GAPDH (sense, GAA GGT GAA GGT CGG AGT C; antisense, GAA GAT GAT GGT GAG ATT TC). Each cDNA sample was amplified by using specific primers. Specific bands corresponding to the estimated sizes were analyzed after agarose gel electrophoresis. To quantify the amount of transcripts, real-time RT-PCR based on the MyQ system (Bio-Rad, CA) was performed as described in the manufacturer’s recommendations. The relative amount of each transcript was normalized with the level of GAPDH. The calibrator sample was represented by a pool of normal mesenchymal tissues (muscles, vessels, adipose tissue and nerves).

Angiogenesis and cell proliferation properties. Immunohistochemistry for CD31 was performed on freshly cut frozen tissue. These slides were fixed in cold acetone for 10 min and did not require antigen retrieval. The primary antibody used was anti-CD31 (platelet/endothelial cell adhesion molecule-1, rat IgG; PharMingen). To quantify the amount of microvessels per field were counted by two investigators in a blinded fashion and the sectional area of microvascular lumen per field was measured with the same method. A single microvessel was defined as a discrete cluster or single cell stained positive for CD31 and the presence of a lumen was required for scoring as a microvessel.

Results

Based on the analysis of the patients’ clinical data and their MR images, we found that the enhancing lesion eventually...
emerged in the advanced stage of GC and demonstrated unresponsiveness to the chemo-irradiation (unpublished).

Tumor progression and angiogenesis. Early infiltrative tumor tissues (early stage, n=7) demonstrated a histologically low-grade and well-differentiated state without enhancement, whereas late advanced tumor tissues with an enhancing lesion (advanced stage, n=5) exhibited progressed, high-grade and undifferentiated tumor cells with enhancement. With regard to cellular proliferation, post-progressive tumor tissues showed a marked increase of PCNA (+) cells, compared with pre-progressive tumor tissues. This implied that the post-progressive tumor was at a more advanced stage in the tumor progression. In terms of angiogenesis, the measurement of microvascular density revealed no definite difference between the stages. However, the microvessel area was markedly increased in the advanced stage of the tumor, which implied that angioectasis had developed in accordance with the tumor progression. Furthermore, after tumor progression, PDGF receptor α and β-positive cells were increasingly found around the angioectatic blood vessels. It indicated that tumor phenotypes changed from non-angiogenesis-dependent growth into an angiogenesis-dependent growth as tumors progressed.

Expression of stem cell markers. To further characterize the cellular composition of the tumors, we investigated the stem cell properties by an immunohistochemical study and real-time RT-PCR. Immunoeexpression of a variety of markers is summarized in Table I (EGF and bFGF data are not shown). When comparing the biological characters between the before and after progression stages, Sox2 and Musashi-1 were equivocally expressed in both stages. However, nestin, one of the neural progenitor cell markers, was more extensively expressed in the advanced stage (Fig. 1). Quantitative real-time PCR indicated that tumor cells also exhibited a marked increase of stem cell markers such as nestin and CD133 in the advanced stage, while they revealed persistence of expression of Sox2 and Musashi-1 (Fig. 2). The increase of CD133 expression was more frequently observed in the advanced stage rather than in the early stage of the tumor (Fig. 3). However, CD133 expression could not be accurately evaluated by real-time PCR, since its expression rate was too low in the two stages of tissues (data were not shown). Contrary to the early stage of angiogenesis-independent growth, tumor tissues in the advanced stage showed that Sox2, nestin and PDGFR-positive cells were prominent around the angioectatic vessels associated with a higher expression of proangiogenic molecules and their receptors (Fig. 3).

Discussion

Gliomatosis (GC) is a good model to explain the type of mechanism contributing to tumor progression. Glioblastomas (GBMs) are highly lethal cancers dependent on angiogenesis. Previous studies have suggested that although tumor cells initially coopt normal cerebral vessels, they subsequently require angiogenesis. GBMs may arise from the malignant progression of low-grade gliomas - referred to as secondary GBMs. However, little is known regarding the mechanism that contributes to the acceleration of tumor progression. In an attempt to comprehend the mechanism, several authors have identified that high-grade features of GC caused by tumor progression are driven by similar molecular genetic alterations which are found in secondary glioblastoma (11-13). Recently, Bao et al suggested the possibility that tumor progression with angiogenesis is mediated by cancer stem cells (14).

It has been reported that GC shows angiogenesis-independent tumor growth as a form of cooption of normal cerebral vessels (9,15-22). However, malignant progression
with angiogenesis requires only one to two years from the initial diagnosis of the pre-progressive lesion. In addition, GC in the early stage can be regarded as a pre-malignant lesion in that almost of all GCs eventually have a malignant transformation, even if GC in the early stage does not accompany neo-angiogenesis. It is comparable with only some of the low-grade gliomas, which experience the malignant transformation and require many years to evolve into the secondary glioblastoma. In this aspect, GC tissues can therefore be a good model in investigating the putatively independent role of cancer stem cells during tumor progression.

Suggestive role of the cancer stem cell in tumor progression. GC in the early stage, is histologically characterized by varying degrees of differentiation. GC and neural stem cells harbor common features of extensive brain parenchymal migratory infiltration, cell division and the potential for full or partial differentiation properties (23,24). It is worth noting that tumor cells increasingly express proangiogenic molecules and stem cell markers in the advanced stage. It is implied that cancer stem cells may have a contributing role in the malignant progression. We found that the newly formed vessel releases a signal that leads to the induction of PDGFR-β-positive pericyte progenitors from surrounding undifferentiated mesenchyme, while PDGFR-β-positive pericyte progenitors are essentially lacking in normal brain tissue (25,26). Recent studies reported that tumor formation can be

Figure 2. Differential expression levels of neural stem markers measured by quantitative real-time RT-PCR. Blue bars, early stage; red bars, advanced stage. Comparison of changes in the expression levels of four stem cell markers between 4 pre-progression samples and 5 post-progression samples.

Figure 3. Protein expression of PDGFs and their receptors detected by immunohistochemistry (magnification, x 400).
induced by the activation of receptor tyrosine kinases such as PDGF receptors (26-28). In this study, a high expression of PDGF receptors on the paraffin section of post-progressive tumor showed evidence that tumor progression was initiated by an early progenitor or stem cells (20).

In conclusion, findings that tumor cells overexpressed Sox2, nestin and PDGF along the angiectatic vessels suggest that tumor progression can be mediated by cancer stem cells and cross-talk of cancer stem cells. Along with their environment, they are closely associated with angiogenesis-dependent progression and angiogenesis-independent growth.

Acknowledgements

This study was supported by the Korean Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MOST) (#M10641000104-060N4100-10410) and Samsung Biomedical Research Institute (SBRI) (C-A7-410-1).

References