Abstract. The objective of this study was to generate new P-glycoprotein (P-gp)-expressing multidrug resistant (MDR) cell lines by drug selection. Since our previous studies have been carried out with cells infected with a P-gp-containing vector, it was important to confirm our findings in cells generated by drug selection. In this report, we describe three B-lymphoma cell lines which became drug-resistant by stepwise exposure to vincristine (VCR): Raji cells resistant to 18 nM VCR (R18V), Namalwa cells resistant to 21 nM VCR (N21V) and DHL-4 cells resistant to 12 nM VCR (DHL-4/12V). Cells overexpressed P-gp and continued to express CD19, CD20 and CD22, all of which are targets for monoclonal antibody (MAb) therapy. The P-gp pump in these new cells was functional as determined by the efflux of Rhodamine 123 and DIOC 2, and the three cell lines were resistant to several chemotherapeutic drugs. We further determined that their P-gp phenotype was stable in xenografted SCID mice and that the tumors were also resistant to chemotherapy. We will now use these new MDR cells to determine whether monoclonal antibodies against CD19 and -20 can reverse P-gp, as we previously demonstrated using Namalwa cells infected with a human mdr1 gene-containing retrovirus.

Introduction

Patients who develop multidrug resistant (MDR) tumors after chemotherapy have a poor prognosis. MDR is generally attributed to the expression of membrane transport or pump proteins, such as P-glycoprotein (P-gp), which inhibit the cellular influx and/or increase the efflux of a variety of chemotherapeutic drugs (1-3). Fifty percent of human cancers (e.g. leukemia, myeloma, lymphomas, breast and ovarian cancer) express P-gp at levels sufficient to confer MDR. Preliminary results with P-gp inhibitors have demonstrated improved responses to chemotherapy in some patients (3-5). However, tumors that expressed P-gp at the time of diagnosis (e.g. colon, kidney, pancreas and liver) did not respond to P-gp inhibitors since they utilized other mechanisms of resistance (6). In order to study mechanisms underlying MDR and therapeutic agents to overcome MDR, stable cells are needed. Since there is no commercially available human mdr1 gene, obtaining MDR cells by transfection is very costly. Very few MDR tumor cell lines obtained by drug-selection have been described (7-10). To the best of our knowledge, drug-resistant B-lymphoma cells are not available.

Materials and methods

Cell lines. The following cell lines were used: two Burkitt's lymphoma cell lines, Namalwa and Raji, and the diffuse hystiocytic lymphoma, DHL-4, as well as our standard MDR cells, Namalwa/MDR1, which was a gift from Dr R. O'Connor at ImmunoGen (Boston, MA) (11). Namalwa/MDR1 derived from Namalwa cells were infected with a human MDR1 gene-containing retrovirus. The cells were cultured in RPMI-1640 medium supplemented with 20 mM HEPES (Invitrogen, CA), 10% heat-inactivated fetal bovine serum (FBS) (HyClone, UT), 1% penicillin-streptomycin and 1% L-glutamine (Invitrogen). Cells were grown at 37˚C in a humidified incubator with 5% CO2. Viability was determined by trypan blue exclusion. The media were changed every 48 h and the cells were passaged three times a week. Cell lines were maintained in culture for 6 weeks and were then discarded and replaced with frozen stock.

Generation of new MDR cells. Three cell lines (Namalwa, Raji and DHL-4) were exposed to vincristine (VCR) at a starting concentration of 3 nM. VCR was increased every 10 days by 3 nM increments until cells became resistant to 12-21 nM VCR. The cells were named by the parental cell names and the final concentration of VCR to which they were resistant (e.g. N21V, R18V and DHL-4/12V). The cells were routinely tested for P-gp expression and activity.

Antibodies and reagents. The following MAbs or hybridomas were used: a) UIC2 anti-P-gp from Immunotech, Miami, FL, or purified in our laboratory from the hybridoma that was a gift from Dr E.B. Mechetner, Oncotec Inc., Irvine, CA and MRK16 anti-P-gp from Kamya Biochemical Co. Seattle,
described (12). Cells (5x10^5) were washed and resuspended using two reagents, Rhodamine 123 and DIOC2, as previously described. The activity of P-gp was investigated by determining the accumulation of FITC-UIC2 (prepared in our laboratory) for P-gp. PE-UIC2 (purchased from Immunotech, Miami, FL) or FITC-Rituximab (FITC-RTX prepared in our laboratory) and rhodamine 123 or 0.55 μM DIOC2 in the presence or absence of P-gp inhibitors (10 μM Verapamil or Valspodar) for 1 h at 37°C to determine influx. After the influx step, the cells were washed twice with serum-free medium to remove the excess rhodamine 123 or DIOC2, resuspended in 1 ml medium, and recultured for 2 h at 37°C to determine efflux. After 2 h, the cells were washed and analyzed on the FACScan by accumulating events in the FL1 channel.

Flow cytometry. Indirect immunofluorescence assays were carried out to evaluate the binding of UIC2 anti-P-gp, HD37 anti-CD19 and RFB4 anti-CD22 to cells using FITC-GAM Ig as the secondary antibody (12,13). The cells were analyzed on a FACScan (Becton-Dickson, Mountain View, CA). Direct immunofluorescence assays for CD20 were performed using FITC-Rituximab (FITC-RTX prepared in our laboratory) and PE-UIC2 (purchased from Immunotech, Miami, FL) or FITC-UIC2 (prepared in our laboratory) for P-gp.

Cellular efflux assays. The activity of P-gp was investigated using two reagents, Rhodamine 123 and DIOC2, as previously described (12). Cells (5x10^5) were washed and resuspended in 1 ml of serum-free RPMI-1640, then incubated with 1.3 μM Rhodamine 123 or 0.55 μM DIOC2 in the presence or absence of P-gp inhibitors (10 μM Verapamil or Valspodar) for 1 h at 37°C to determine influx. After the influx step, the cells were washed twice with serum-free medium to remove the excess rhodamine 123 or DIOC2, resuspended in 1 ml medium, and recultured for 2 h at 37°C to determine efflux. After 2 h, the cells were washed and analyzed on the FACScan by accumulating events in the FL1 channel.

Cytotoxicity assays. The cytotoxic activity of different drugs was tested by a colorimetric method using the CellTiter 96® AQueous One solution cell proliferation assay, which was purchased from Promega Corporation, Madison, WI. The kit is composed of the novel tetrazolium compound which is reduced to a formazan compound, absorbance at 490 nm. The manufacturer’s protocol was used. A 20 μl reagent was added per well in 96-well plates, which were incubated for 4 h at 37°C. The data were analyzed using a SpectraFluor Plus (TECAN, Austria) microplate reader.

Western blot (WB) analysis. Ten million cells were lysed on ice with lysis buffer consisting of 0.25 M Tris pH 7.5 containing 1% Triton X-100. The protein concentration of the lysates was determined using macro and micro BCA kit assay reagent kits were purchased from Pierce Biotechnology, Rockford, IL and were used to measure the protein concentrations of cell lysates.

Chemotherapeutic drugs. The following drugs were used: vincristine sulfate (injection, USP) from Faulding Pharmaceutical Co. (a Mayne Group Company, Paramus, NJ); vinblastine from Bedford Laboratories, Bedford, OH; doxorubicin hydrochloride (injection, USP) from Genentech, San Francisco, CA; RFB4 anti-CD22 from Dr G. Janossy, Royal Free Hospital, London, UK and purified in our laboratory; e) fluorescein isothiocyanate (FITC) - goat anti-mouse IgG (H+L) (GAM Ig) from Kirkegaard and Perry Laboratory Inc., Gaithersburg, MD. Verapamil and Rhodamine 123 were purchased from Sigma, St. Louis, MO; DIOC2 from Molecular Probes (Eugene, OR) and Valspodar (PSC 833) was a gift from Novartis Pharma AG, Basel, Switzerland. Macro and micro bicinconinic acid (BCA) protein assay reagent kits were purchased from Pierce Biotechnology, Rockford, IL and were used to measure the protein concentrations of cell lysates.

Flow cytometry. Indirect immunofluorescence assays were carried out to evaluate the binding of UIC2 anti-P-gp, HD37 anti-CD19 and RFB4 anti-CD22 to cells using FITC-GAM Ig as the secondary antibody (12,13). The cells were analyzed on a FACScan (Becton-Dickson, Mountain View, CA). Direct immunofluorescence assays for CD20 were performed using FITC-Rituximab (FITC-RTX prepared in our laboratory) and PE-UIC2 (purchased from Immunotech, Miami, FL) or FITC-UIC2 (prepared in our laboratory) for P-gp.

Cellular efflux assays. The activity of P-gp was investigated using two reagents, Rhodamine 123 and DIOC2, as previously described (12). Cells (5x10^5) were washed and resuspended in 1 ml of serum-free RPMI-1640, then incubated with 1.3 μM Rhodamine 123 or 0.55 μM DIOC2 in the presence or absence of P-gp inhibitors (10 μM Verapamil or Valspodar) for 1 h at 37°C to determine influx. After the influx step, the cells were washed twice with serum-free medium to remove the excess rhodamine 123 or DIOC2, resuspended in 1 ml medium, and recultured for 2 h at 37°C to determine efflux. After 2 h, the cells were washed and analyzed on the FACScan by accumulating events in the FL1 channel.

Cytotoxicity assays. The cytotoxic activity of different drugs was tested by a colorimetric method using the CellTiter 96® AQueous One solution cell proliferation assay, which was purchased from Promega Corporation, Madison, WI. The kit is composed of the novel tetrazolium compound which is reduced to a formazan compound, absorbance at 490 nm. The manufacturer’s protocol was used. A 20 μl reagent was added per well in 96-well plates, which were incubated for 4 h at 37°C. The data were analyzed using a SpectraFluor Plus (TECAN, Austria) microplate reader.

Western blot (WB) analysis. Ten million cells were lysed on ice with lysis buffer consisting of 0.25 M Tris pH 7.5 containing 1% Triton X-100. The protein concentration of the lysates was determined using macro and micro BCA kit assay reagent kits were purchased from Pierce Biotechnology, Rockford, IL and were used to measure the protein concentrations of cell lysates.

Chemotherapeutic drugs. The following drugs were used: vincristine sulfate (injection, USP) from Faulding Pharmaceutical Co. (a Mayne Group Company, Paramus, NJ); vinblastine from Bedford Laboratories, Bedford, OH; doxorubicin hydrochloride (injection, USP) from Genentech, San Francisco, CA; RFB4 anti-CD22 from Dr G. Janossy, Royal Free Hospital, London, UK and purified in our laboratory; e) fluorescein isothiocyanate (FITC) - goat anti-mouse IgG (H+L) (GAM Ig) from Kirkegaard and Perry Laboratory Inc., Gaithersburg, MD. Verapamil and Rhodamine 123 were purchased from Sigma, St. Louis, MO; DIOC2 from Molecular Probes (Eugene, OR) and Valspodar (PSC 833) was a gift from Novartis Pharma AG, Basel, Switzerland. Macro and micro bicinconinic acid (BCA) protein assay reagent kits were purchased from Pierce Biotechnology, Rockford, IL and were used to measure the protein concentrations of cell lysates.
and the selection of MDR cells failed. To enrich the P-gp + VCR, 50% died. The surviving cells grew much more slowly survived. When the Raji cells were cultured directly in 12 nM cells (N21V, R18V and DHL-4/12V) were P-gp + and the antibody. The sorted P-gp + population was further grown in FACS analysis after staining the cells with UIC2 anti-P-gp population of the cells we also carried out cell-sorting using 24 h), the cells grew more slowly and only the adapted cells increased by >1 increment of 3 nM, all the cells died (Table I). When the drug concentration was increased by >1 increment of 3 nM, all the cells died (Table I). Even though the viability was not affected immediately (after 24 h), the cells grew more slowly and only the adapted cells survived. When the Raji cells were cultured directly in 12 nM VCR, 50% died. The surviving cells grew much more slowly and the selection of MDR cells failed. To enrich the P-gp+ population of the cells we also carried out cell-sorting using FACS analysis after staining the cells with UIC2 anti-P-gp antibody. The sorted P-gp+ population was further grown in the culture in the presence of VCR and the phenotype remained stable. The working batches of the cells were cultured for 6–8 weeks, at which time new cells were thawed from frozen stocks. The best batches of selected MDR cells were frozen and stored.

The phenotype of drug-selected MDR cells. The MDR cells were evaluated for the expression of P-gp, CD19, CD20 and CD22 using direct and indirect immunofluorescence and FACS analysis. The results are presented in Table II and indicate that none of the parental cells (Namalwa, Raji or DHL-4) expressed P-gp whereas the drug-selected MDR cells expressed P-gp at different densities. However, 80-90% of drug-selected cells (N21V, R18V and DHL-4/12V) were P-gp+ and the expression of P-gp remained unchanged when the cells were grown in complete RPMI media without VCR. The expression of CD19, CD20 and CD22 on the surface of the MDR cells was not changed after drug-selection (Table II). The mean fluorescence intensity (MFI) of CD20 was highly variable among the cell lines. The Namalwa cells expressed low amounts of CD20, whereas the Raji and DHL-4 expressed higher amounts (data not shown). The MDR cells did not express multidrug resistant protein, another MDR specific marker (data not shown).

The cytotoxic effect of different drugs on the drug-selected MDR cells. The results of drug-killing assays (Table III) indicate that the three parental cells were killed to varying degrees not only by VCR but also by similar drugs (e.g. vinblastine), or different drugs (e.g. doxorubicin, daunorubicin, etoposide and cyclophosphamide). The most toxic drug was VCR and its toxicity was ~5 times higher on the Raji than on the Namalwa cells. The other drugs were significantly less toxic than VCR, but Raji cells were always killed by smaller amounts of drugs (e.g. doxorubicin and daunorubicin) than were the Namalwa cells. The new MDR cells as well as the Namalwa/MDR1 cells were resistant to all of the drugs. These results demonstrate that the new drug-resistant cells have a typical MDR phenotype. Fig. 2 illustrates that VCR killed the two parental cells (Namalwa and Raji) whereas the three MDR cells were resistant to the drug.

The P-gp pump is functional as demonstrated by the efflux of Rhodamine 123 and DIOC2. To determine whether P-gp was active, the cells were incubated with Rhodamine 123 or DIOC2 and the efflux of the dyes was determined. The three parental cells retained the dyes whereas the MDR cells effluxed them. The P-gp activity was blocked specifically by the well-known P-gp substrate, Verapamil as demonstrated by the Rhodamine 123 (Fig. 3A) or DIOC2 efflux assays (Fig. 3B). The use of Valspoddar as a P-gp blocker had a similar effect and the cells retained the dyes (Fig. 3C).

The overexpression of P-gp in MDR cells was confirmed by WB analysis. Cells (4x10^6) were lysed on ice with lysis buffer containing 1% Triton X-100 and the concentration of proteins was determined. Equal amounts of proteins from each sample were analyzed by WB. The gels were then scanned and the amount of P-gp was determined. As shown in Fig. 4, Namalwa/MDR1 and N21V cells expressed comparable amounts of P-gp, whereas the R18V cells expressed more P-gp and the DHL-4/12V less than Namalwa/MDR1 for the same amount of protein loaded, which is consistent with the FACS analysis (Table II). Despite the quantitative differences among the cell lines, this result demonstrates that the new MDR cells overexpressed P-gp while the parental cells did not.

Table I. The progressive adaptation to increasing concentrations of VCR was necessary to select drug-resistant cells.

<table>
<thead>
<tr>
<th>VCR concentration increase</th>
<th>Viability after 24 h (%)</th>
<th>Growth factor*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raji-VCR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-12 nM</td>
<td>90.9</td>
<td>9.75</td>
</tr>
<tr>
<td>9-15 nM</td>
<td>89.9</td>
<td>10.25</td>
</tr>
<tr>
<td>9-21 nM</td>
<td>90.4</td>
<td>6.60</td>
</tr>
<tr>
<td>9-24 nM</td>
<td>86.4</td>
<td>5.55</td>
</tr>
<tr>
<td>Raji</td>
<td>53.6</td>
<td>0.38</td>
</tr>
</tbody>
</table>

*The growth factor represents the ratio between the cell concentration after 24 h in culture and the initial concentration of 2x10^5 cells/ml. The data in the table depict one experiment of two performed.

Table II. The phenotype of MDR vs. parental cells.a

<table>
<thead>
<tr>
<th>Cell line</th>
<th>CD19</th>
<th>CD20</th>
<th>CD22</th>
<th>P-gp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Namalwa</td>
<td>95.7</td>
<td>83.5</td>
<td>95.5</td>
<td>7.1</td>
</tr>
<tr>
<td>NMDR1</td>
<td>92.7</td>
<td>90.9</td>
<td>91.7</td>
<td>90.0</td>
</tr>
<tr>
<td>N21V</td>
<td>93.3</td>
<td>90.4</td>
<td>93.3</td>
<td>91.9</td>
</tr>
<tr>
<td>Raji</td>
<td>92.0</td>
<td>98.1</td>
<td>91.9</td>
<td>1.8</td>
</tr>
<tr>
<td>R18V</td>
<td>92.0</td>
<td>97.3</td>
<td>94.3</td>
<td>85.7</td>
</tr>
<tr>
<td>DHL-4</td>
<td>77.8</td>
<td>99.7</td>
<td>76.4</td>
<td>4.1</td>
</tr>
<tr>
<td>DHL-4/12V</td>
<td>89.6</td>
<td>98.8</td>
<td>89.6</td>
<td>76.3</td>
</tr>
</tbody>
</table>

aFACS analysis was performed using saturating concentrations of HD37 and RFB4 and a FITC-GAM1g as a secondary antibody. Direct FACS analysis was performed for CD20 (using FITC-RTX) and P-gp (using either PE-UIC2 or FITC-UIC2). The results depict one representative experiment of 2-5 performed.
The MDR cells grow in SCID mice and are drug-resistant. N21V, R18V and Namalwa/MDR1 cells were inoculated into SCID mice and the tumor take was 100%. All mice were consistently paralyzed 20 days after tumor cell inoculation. The treatment of SCID mice with VCR demonstrated that all the MDR tumors were resistant, whereas the parental counterparts responded to VCR and xenografted SCID mice survived significantly longer than the untreated controls (Fig. 5 and Table IV). VCR was less effective in mice with Namalwa than with Raji tumors, which is consistent with the cytotoxic effect of the drug on these cells in the culture as shown in Table III.

Discussion

We have previously reported that two MAbs, HD37 anti-CD19 and RTX anti-CD20, chemosensitized Namalwa/MDR1 cells and inhibited the activity of P-gp (13,14). To confirm these results it was important to use more than one cell line. Moreover, we needed stable MDR cells generated in a manner similar to that developed by patients after chemotherapy. For this reason, we generated three new drug-resistant cell lines by progressive adaptation to 3 nM increments of VCR. We chose to generate: i) N21V cells, as an alternative to Namalwa/MDR1 cells; ii) R18V cells since Raji cells express more CD20 than Namalwa cells; and iii) DHL-4/12V cells, which are derived from diffuse hystiocytic lymphoma cells, whereas the others are Burkitt’s lymphomas. The new MDR cells expressed P-gp but at a lower density than the Namalwa/MDR1 cells. However, the P-gp pump was as active in the new cells as in the Namalwa/MDR1 cells despite the lower density of P-gp. The selected VCR-resistant cells remained P-gp+ and VCR-resistant even after several passages without VCR in the media. The same observation was made by another group who generated L1219/VCR-resistant cells (16). Moreover, P-gp was blocked by Verapamil and Valspodar suggesting that the pump was functional. The activity of P-gp was also demonstrated by the lack of a cytotoxic effect, not only of the drug used for selection (VCR) but also of other drugs. The fact that these cells are resistant to other drugs demonstrates a typical MDR phenotype when overexpression of the membrane efflux pumps (e.g. P-gp) is involved in MDR. Other studies indicate that drug resistance may be very specific for the drug used, due to abnormal genetic machinery such as gene amplification within the tumor cells (17). A study performed with a different cell line (MOLT-4) showed that the acquisition of the resistance was relatively reagent-specific (18). However, it is well known that P-gp, a member of the ATP-binding cassette transport family, can confer resistance against a large number of functionally and chemically distinct cytotoxic compounds. Several investigations suggest that P-gp contains multiple drug-binding sites rather
Figure 3. The P-gp pump is functional in MDR cell lines. (A) A Rhodamine 123 efflux assay. Cells (5x10^5/ml) were treated for 1 h at 37˚C (influx step) with 3 μM Rhodamine alone or in combination with the P-gp substrate/blocker Verapamil (10 μM). Cells were then washed twice with RPMI-1640 without FBS, resuspended in FBS-free media and incubated for 2 more h at 37˚C to determine the efflux of the dye. The histograms (top panel) represent the MDR cells and the parental counterparts (bottom panel). (1) Cells + media, (2) cells + Rhodamine 123 only and (3) cells + Verapamil + Rhodamine 123. Each histogram is one representative experiment of 3-5 performed. (B) A DIOC2 efflux assay. The protocol was essentially the same as the one described in (A). DIOC2 was used at 0.55 μM. The top histograms represent the MDR cells and the bottom the parental counterparts. (1) Cells + media, (2) cells + DIOC2 only and (3) cells + Verapamil + DIOC2. This is one representative experiment of 2 performed. (C) Verapamil and Valspodar specifically block the efflux of Rhodamine and DIOC2. The top histograms show the Namalwa 21 nM VCR (N21V) cells and the bottom histograms the Raji 18 nM VCR (R18V). (1) Cells + media, (2) cells + Rhodamine only, (3) cells + Verapamil + Rhodamine, (4) cells + Valspodar + Rhodamine, (5) cells + DIOC2, (6) cells + Verapamil + DIOC2 and (7) cells + Valspodar + DIOC2. This is one experiment of two performed.
than a single site of broad substrate specificity. Martin et al. (19) found that a minimum of four binding sites can be assigned to P-gp and these multiple sites display complex allosteric interactions. These data support our finding that P-gp induced by selection to VCR confers resistance to other drugs.

The WBs showed that the total amount of P-gp in the new MDR cells differs. The N21V and Namalwa/MDR1 cells contain a comparable amount of P-gp whereas R18V contain more and the DHL-4/12V cells contain less P-gp than the Namalwa/MDR1. Importantly, the P-gp phenotype was stably expressed not only in vitro but also in tumors grown in SCID mice.

In conclusion, we have generated three different B-lymphoma tumor cells which stably express P-gp and have an active pump that is responsible for drug efflux from the MDR tumor cells. We did not find significant differences between our MDR cells obtained by drug-selection and the Namalwa/MDR1 generated by retroviral infection with the human mdr1 gene. Importantly, these new MDR cells express three other B-lymphoma markers (CD19, CD20 and CD22) at levels similar to those expressed by their parental counterparts and with the Namalwa/MDR1 cells, suggesting that they can be used for MAb therapy. Studies carried out with other drug-resistant cells obtained by transfection with the mdr1 gene have demonstrated that drug resistance conferred by this procedure is not as robust as that of drug-selected MDR cell lines (20,21). Yu et al. (21) found that when MCF-7 breast carcinoma cells were transfected with the human mdr1 gene, they expressed levels of P-gp equivalent to those of cells selected for resistance to doxorubicin but exhibited 10-50-fold less resistance to doxorubicin and vinblastine. The fact that the cells described in this report stably express P-gp in vitro as well as in vivo suggests that we have induced a typical MDR phenotype characterized by the overexpression of P-gp. Moreover, drug resistance was similar to that observed in the Namalwa/MDR1 cells. These new cell lines should be useful for a variety of applications and will be provided upon request.

Table IV. The survival of tumor-bearing SCID mice treated with VCR vs. non-treated (control).

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Control</th>
<th>VCR</th>
<th>pVCR vs. control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Namalwa (N)</td>
<td>20.2±1.1</td>
<td>42.8±6.4</td>
<td>0.03</td>
</tr>
<tr>
<td>N MDR1</td>
<td>21.0±0.7</td>
<td>20.0±0.8</td>
<td>0.10</td>
</tr>
<tr>
<td>N 21 V</td>
<td>19.0±0.0</td>
<td>20.0±1.1</td>
<td>0.09</td>
</tr>
<tr>
<td>Raji</td>
<td>20.2±0.8</td>
<td>75.6±10.7</td>
<td>0.02</td>
</tr>
<tr>
<td>R18V</td>
<td>27.2±1.3</td>
<td>29.0±1.6</td>
<td>0.10</td>
</tr>
</tbody>
</table>

*Groups of 5 SCID mice were sacrificed when they developed hind-leg paralysis. The data are the mean of 2-3 experiments performed.

bp is the coefficient of significance as determined by the log-rank test to compare the survival time of mice.
Acknowledgements

We thank Lien Lee and Ayesha Ahmed for their preparation of the UIC2 and RFB4 antibodies. We thank Phyllis Barron for coordinating the animal experiments and Linda Berry for administrative assistance. This report was supported by the NIH grant CA-104026.

References