Expression of epiregulin, a novel epidermal growth factor ligand associated with prognosis in human oral squamous cell carcinomas

HIDEO SHIGEISHI, KOICHIRO HIGASHIKAWA, MISATO HIRAOKA, SHINICHI FUJIMOTO, YOSHTSUGU MITANI, KOUJI OHTA, MASAAKI TAKECHI and NOBUYUKI KAMATA

Department of Oral and Maxillofacial Surgery, Division of Cervico-Gnathostomatology, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan

Received December 6, 2007; Accepted March 4, 2008

Abstract. We examined the expression of epiregulin and amphiregulin mRNA in 39 oral SCCs, 2 epithelial dysplasias and 7 normal gingivae by real-time RT-PCR. The mean expression level of epiregulin mRNA was higher in oral SCCs (0.29±0.50) than normal gingivae (0.01±0.007) and epithelial dysplasias (0.01±0.001). The expression level of epiregulin mRNA was significantly higher in oral SCCs than normal gingivae (Mann-Whitney U test, P=0.023). Epiregulin mRNA was higher in stage III/IV than in stage I/II oral SCCs. However, a significant association was not found. The mean expression level of amphiregulin mRNA was higher in oral SCCs (0.18±0.24) than normal gingivae (0.002±0.003) and epithelial dysplasias (0.01±0.001). Amphiregulin mRNA was significantly higher in oral SCCs than normal gingivae (Mann-Whitney U test, P=0.001). We then examined the expression of four EGF receptor mRNA in oral SCCs. The expression levels of HER1, HER2, HER3 and HER4 mRNA in oral SCCs were increased compared to those in normal gingivae. A significant correlation was found between the mRNA expression levels of epiregulin and HER2, HER3 and HER4 (Spearman’s correlation coefficient by rank test, P=0.031, P=0.004 and P=0.027, respectively). Patients with oral SCC that have a high expression of epiregulin had a significantly shorter survival than those with low expression (log-rank test, P=0.05). These results indicate that human epiregulin is closely linked to the increased or abnormal cell proliferation in human oral SCC.

Introduction

The epidermal growth factor (EGF) system is involved in embryogenesis, development, proliferation and differentiation (1,2). There are several EGF family ligands that can bind the EGF receptors including heparin-binding epidermal growth factor (HB-EGF), transforming growth factor-α (TGF-α), amphiregulin, epiregulin, betacellulin and neuregulin (3-10). The four types of EGF receptors include: ErbB-1 (HER1), ErbB-2 (Neu/HER2), ErbB-3 (HER3) and ErbB-4 (HER4) (11-14). These receptors have a similar molecular structure consisting of transmembrane glycoproteins with an extracellular ligand-binding domain, a transmembrane region and an intracellular domain (14). EGF family ligands can be divided into two groups. One group of these ligands binds to HER1, and includes HB-EGF, TGF-α amphiregulin, epiregulin and betacellulin (3-9). The other group includes neuregulin, which is a ligand of HER3 and HER4 (10).

Epiregulin is a new member of the EGF family, purified from the conditioned medium of the mouse fibroblast-derived tumor cell line (15). Epiregulin shows a dual biological activity; stimulating the proliferation of fibroblasts, hepatocytes, smooth muscle cells and keratinocytes but inhibiting the growth of several tumor-derived cell lines (15-17). It binds directly to HER4 as well as HER1 and induces tyrosine phosphorylation of HER2, HER3 and HER4 (18). Amphiregulin was originally purified from a serum-free conditioned medium of the MCF-7 breast cancer epithelial cells treated with the phorbol 12-myristate-13-acetate (6). The carboxyl-terminal domain of amphiregulin binds to the EGF receptor (HER1) (19). Amphiregulin induces tyrosine phosphorylation of the EGF receptor and downstream activation of the extra-cellular regulated kinase signaling cascade (19). It promotes the growth of fibroblasts, tumor cells and human epidermal keratinocytes but inhibits the growth of some normal and neoplastic cell lines (20). Studies have clarified the evidence that an amphiregulin-mediated autocrine loop exists in human cancers (21,22).

In human carcinomas, the EGF family ligands participate in tumor proliferation, migration, invasion and angiogenesis (23). However, attempts to examine the expression of the epiregulin in human oral squamous cell carcinomas have yet to be made. In the present study, we examined the expression...
of the human epiregulin gene in oral squamous cell carcinomas to clarify the correlation between epiregulin expression and clinicopathological factors. We also examined the expression of amphiregulin mRNA in human oral squamous cell carcinomas. The correlation between the expression of EGF receptors and epiregulin/amphiregulin was investigated. Furthermore, the correlation between the mRNA expression levels of epiregulin/amphiregulin and survival rates of OSCC patients were examined.

Materials and methods

Tissue samples. We examined 39 oral squamous cell carcinomas (SCCs), 2 epithelial dysplasias and 7 normal gingivae. Tumor tissues and specimens of normal gingivae were obtained with informed consent and approval from the institutional review board at Hiroshima University Dental Hospital (Japan) between 1995 and 2006. The oral SCC samples were derived from the tongue, upper gingiva, lower gingiva and buccal mucosa. The clinical staging was determined according to the International Union Against Cancer TNM classification (24). The primary tumors were classified histopathologically as well- or moderately-differentiated in the World Health Organization (WHO) classification (25). For molecular analyses, tissue samples obtained at the time of surgery were frozen immediately in liquid nitrogen and stored at -80˚C.

RNA extraction and quantitative RT-PCR analysis. RNA was extracted with RNAeasy mini kit (Qiagen, Hilden, Germany). Total RNA (1 μg) was subjected to a reverse-transcriptase reaction using the first strand cDNA synthesis kit (Amersham Biosciences, Uppsala, Sweden). The quantification of mRNA levels was carried out using a real-time fluorescence detection method according to the method of Eads et al (26). The fluorescence was detected by the laser detector of the Line Gene Fluorecent Quantitative Detection System (Bio Flux, Tokyo, Japan) and the detection was carried out by measuring the binding of a fluorescence dye, SYBR-Green I, to double-stranded DNA. The PCR was run in microtubes in a volume of 20 μl. The reaction mixture contained 1.0 μg of cDNA, 10 μl of SYBR-Green PCR master mix (Toyobo, Osaka, Japan) and 10 pmol of each pair of oligonucleotide primers. The primer sequences were: epiregulin, 5'-CAAAAGTGA GCTCTGACAGT-3' (sense) and 5'-CTGTACCATTCTGC AGAAAATA-3' (antisense); amphiregulin, 5'-CGGGAGCG ACTATGACTACTC-3' (sense) and 5'-GGGTCTTAACCTA CTTGCAACTGG-3' (antisense); HER1, 5'-GAGAGGA GAACCTCAGAA-3' (sense) and 5'-TAGACATTAT TGAGAAGTG-3' (antisense); HER2, 5'-CCAGGACCCTGCT GAACCTGG-3' (sense) and 5'-TGTACGGCCGCCAC ATCC-3' (antisense); HER3, 5'-GGTGTGGCTGGTTGC TTTT-3' (sense) and 5'-GGTGCTGGAGGTGGTGTGTA-3' (antisense); HER4, 5'-TGTGAGAGATATGGAAGATGGGC-3' (sense) and 5'-GTTGTGTTGTAAGATGGGAATGGC-3' (antisense), and G3PDH, 5'-ACCACAGTCCATGCCATT-3' (sense) and 5'-TCCACCCACCTTGCGCTGTA-3' (antisense). The PCR program was as follows: initial melting at 95˚C for 30 sec followed by 40 cycles at 95˚C for 15 sec, 57˚C for 10 sec and 72˚C for 15 sec. The threshold cycle (CT) of each PCR product was defined as the cycle number at the point where the fluorescence signal had passed the fixed threshold. The relative quantification was calculated as 2^(-ΔΔCT) and normalized to an internal control (G3PDH).

Immunohistochemistry. Avidin-biotin-peroxidase complex immunostaining was performed as previously described (27). Epiregulin staining using an anti-epiregulin polyclonal antibody (R&D Systems, Minneapolis, USA) (diluted 1:100) was graded as positive (at least 10% of tumor cells showed moderate to intense immunoreactivity) or negative (<10% of tumor cells showed weak or no immunoreactivity).

Statistical methods. The results of quantitative RT-PCR analysis were compared with the patient clinicopathological information using the Mann-Whitney U test and Spearman's correlation coefficient by rank test. The overall survival rates were calculated by the Kaplan-Meier method and analyzed.

<table>
<thead>
<tr>
<th>Site</th>
<th>Mean ± SD</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tongue</td>
<td>0.21±0.36</td>
<td>0.94</td>
</tr>
<tr>
<td>Upper gingiva</td>
<td>0.42±0.70</td>
<td>0.57</td>
</tr>
<tr>
<td>Lower gingiva</td>
<td>0.32±0.58</td>
<td>0.88</td>
</tr>
<tr>
<td>Buccal mucosa</td>
<td>0.34±0.53</td>
<td>0.88</td>
</tr>
<tr>
<td>Histology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well</td>
<td>0.23±0.48</td>
<td>0.94</td>
</tr>
<tr>
<td>Moderate</td>
<td>0.40±0.53</td>
<td>0.88</td>
</tr>
<tr>
<td>Tumor size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>0.05±0.05</td>
<td>0.96</td>
</tr>
<tr>
<td>T2</td>
<td>0.23±0.36</td>
<td>0.94</td>
</tr>
<tr>
<td>T3</td>
<td>0.43±0.77</td>
<td>0.88</td>
</tr>
<tr>
<td>T4</td>
<td>0.41±0.60</td>
<td>0.88</td>
</tr>
<tr>
<td>Clinical stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/II</td>
<td>0.09±0.01</td>
<td>0.29</td>
</tr>
<tr>
<td>III/IV</td>
<td>0.45±0.02</td>
<td>0.88</td>
</tr>
<tr>
<td>Lymph node metastasis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>0.18±0.25</td>
<td>0.88</td>
</tr>
<tr>
<td>Negative</td>
<td>0.33±0.56</td>
<td>0.88</td>
</tr>
</tbody>
</table>
by means of the log-rank test. P<0.05 was regarded as statistically significant.

Results

Expression of epiregulin and amphiregulin mRNA in oral SCCs. We examined the expression of epiregulin and amphiregulin mRNA in 39 oral SCCs, 2 epithelial dysplasias and 7 normal gingivae by real-time RT-PCR. The mean expression level of epiregulin mRNA was higher in oral SCCs (0.29±0.50) than normal gingivae (0.01±0.007) and epithelial dysplasias (0.01±0.001) as shown in Fig. 1A. The expression level of epiregulin mRNA was significantly higher in oral SCCs than normal gingivae (Mann-Whitney U test, P=0.023). In addition, oral SCCs showed high levels of epiregulin mRNA expression compared to epithelial dysplasias, although the difference was not significant (Mann-Whitney U test, P=0.17). The expression of epiregulin mRNA was not correlated to clinicopathological factors such as age, gender, tumor type and location. Data on epiregulin mRNA expression, tumor size, clinical stage and lymph node metastasis are summarized in Table I. The expression level of epiregulin mRNA was higher in stage III/IV than in stage I/II oral SCCs. However, a significant association was not found between oral SCCs and normal gingivae (Mann-Whitney U test, P=0.15). The expression levels of HER2, HER3 and HER4 mRNA in oral SCCs (0.49±0.27, 0.20±0.23 and 0.15±0.40, respectively) were also increased compared to those in normal gingivae (0.39±0.36, 0.07±0.057 and 0.11±0.11, respectively). Statistical correlations were not found (Mann-Whitney U test, P=0.088, P=0.063 and P=0.81, respectively). The expression levels of HER3 and HER4 mRNA were higher in
stage III/IV (0.26±0.29 and 0.21±0.54) than in stage I/II oral SCCs (0.13±0.12 and 0.082±0.065). However, a significant association was not found (Mann-Whitney U test, P=0.20 and P=0.19).

Correlation of the mRNA expression levels between epiregulin/amphiregulin and EGF receptors. The co-expression of the epiregulin/amphiregulin and four EGF receptors was also examined. A significant correlation was found between the mRNA expression levels of epiregulin and HER2, HER3 and HER4 (Spearman’s correlation coefficient by rank test, P=0.031, P=0.004 and P=0.027, respectively) (Fig. 3). However, a significant correlation between epiregulin and HER1 could not be found (Spearman’s correlation coefficient by rank test, P=0.24). The significant correlation between the mRNA expression levels of amphiregulin and HER4 was found (Spearman’s correlation coefficient by rank test, P=0.011) (Fig. 4). We could not find a significant correlation between amphiregulin and HER1, HER2 and HER3 (Spearman’s correlation coefficient by rank test, P=0.059, P=0.35 and P=0.77, respectively) (Fig. 4).

Correlation between the mRNA expression levels of epiregulin/amphiregulin and survival rates of OSCC patients. The 13 patients whose tumors expressed increased levels of epiregulin mRNA (expression level >0.1) showed a poor survival compared to the 17 expressing epiregulin mRNA at lower levels (expression level <0.1); the difference being statistically significant (log-rank test, P<0.05) (Fig. 5A). On the other hand, the 15 patients whose tumors expressed increased levels of amphiregulin (expression level >0.05) showed a poor survival compared to the 15 expressing amphiregulin at lower levels (expression level <0.05) (Fig. 5B). However, a significant difference was not found (log-rank test, P>0.05). These results suggest that epiregulin has a correlation with the prognosis of oral SCC patients.

Discussion

Head and neck cancer is one of the most common cancers worldwide. Oral cancers account for 40% of head and neck cancers (28). Despite advances in diagnostic and therapeutic possibilities, many oral SCC patients have a poor prognosis. Early diagnosis is the most important factor in determining the survival of the oral SCC patients (29). Prevention with involves reducing the exposure of tobacco and alcohol has also been shown to be effective in reducing oral SCC (29,30).

EGF and EGF receptors participate in cell proliferation, invasion, differentiation and angiogenesis in several carcinomas (23). Epiregulin is a new member of the EGF family (15). The human epiregulin gene encodes a 163-residue putative transmembrane precursor containing an EGF-like domain and the structural organization is similar to that of other EGF family ligands (16). It binds to epidermal growth factor (HER1) and HER4, and induces the tyrosine phosphorylation of HER2, HER3 and HER4 (18). Lee et al have reported that epiregulin acts as a dual biological activity, by stimulating the proliferation of fibroblasts, hepatocytes, smooth muscle cells and keratinocytes but also inhibiting the
Figure 3. Correlation of the mRNA expression levels between epiregulin and EGF receptors. Spearman's correlation coefficient by rank test. P<0.05 was regarded as statistically significant.

Figure 4. Correlation of the mRNA expression levels between amphiregulin and EGF receptors. Spearman's correlation coefficient by rank test. P<0.05 was regarded as statistically significant.
growth of several cancer cell lines (17). The epiregulin gene has different characteristics from those of other EGF family ligands.

Toyoda et al. have reported that epiregulin mRNA expression was not observed in human normal tissues except the placenta and peripheral blood leukocytes, but was detected in various types of human cancer cell lines (16). A high expression of epiregulin mRNA was recently reported in human bladder and colorectal cancers (31,32). In the present study, we showed that epiregulin mRNA expression was significantly higher in oral SCC than normal gingivae. Most of the oral SCCs with higher levels of epiregulin mRNA showed the expression of epiregulin protein. Such observations suggest that the up-regulation of human epiregulin correlates with the malignant condition. We have shown the correlation between the expression of epiregulin mRNA and patient survival. The OSCC patients whose tumors expressed increased levels of epiregulin showed a poor survival. These results suggest that human epiregulin may be a useful prognostic factor of oral SCC patients.

Amphiregulin is a heparin-binding growth factor and acts as a ligand EGF receptor (HER1) (7). It is the predominant autocrine growth factor produced by keratinocytes (33). Overexpression of amphiregulin results in the rapid growth of keratinocytic tumors (34). Bostwick et al. have shown the increased expression of amphiregulin protein in prostatic adenocarcinomas by immunohistochemical analysis (35). Castillo et al. recently reported that amphiregulin was expressed in human hepatocellular carcinomas and cell lines and behaved as a growth factor for hepatocarcinoma cells (21). They have shown the existence of the amphiregulin-mediated autocrine loop that contributes to the transformed phenotype in hepatocellular carcinoma cell lines. In this study, we showed the increased expression of amphiregulin mRNA in oral SCC. Furthermore, we found the increased expression of amphiregulin mRNA in salivary gland carcinomas as compared with pleomorphic adenomas and submandibular glands (Shigeishi et al., unpublished observations). These results indicate that amphiregulin is involved in the cell proliferation of human malignant tumors.

Overexpression of the EGF receptor has been reported in several human neoplasms such as breast, lung, colon, prostate and ovarian carcinomas (36,37). In our data, the mRNA expression of EGF receptors (HER1, HER2, HER3 and HER4) was increased in oral SCCs. The increased expression of EGF receptors is associated with the up-regulation of EGF ligands (37-39). Todd et al. reported that TGF-α and EGF receptor mRNA were overexpressed in oral cancer cell lines (40). In the present study, the mRNA expression levels of epiregulin and EGF receptor were increased in oral SCCs as compared with normal gingivae. A significant correlation was found between the mRNA expression levels of epiregulin and HER1, HER3 and HER4. Epiregulin directly binds to HER1 and HER4. Activation of the EGF receptor (HER1 and HER4) may contribute to the biological response such as tumor proliferation in oral SCC. High incidences of DNA amplification and overexpression of the EGF receptor in human oral SCCs have been reported (34,36,41). However, the growth of SCC cells was inhibited by EGF in vitro (42). Further investigations are needed to clarify the molecular mechanism leading to the inhibitory or stimulatory effects of EGF in the growth of SCC cells.

This is the first report on the epiregulin mRNA expression in oral SCC patients. Patients with tumors that have a low expression of epiregulin have a significantly longer survival than patients with a high expression. Our results indicate that there is a strong correlation between the expression of epiregulin and survival. The identification of a specific factor for predicting clinical outcome in cases of oral SCC would be helpful for selecting effective treatments. Our results suggest that epiregulin may be a potential marker in patients with oral SCC.
Acknowledgements

This work was supported by a grant-in-aid from the Japanese Ministry of Education, Culture, Sports, and Technology.

References

