The prevalence of mtDNA4977 deletion in primary human endometrial carcinomas and matched control samples

KONRAD FUTYMA1, LECHOSLAW PUTOWSKI1, MAREK CYBULSKI2, PAWEL MIOTLA1, TOMASZ RECHBERGER1 and ANDRZEJ SEMCZUK1

1Second Department of Gynecology, 2Department of Biochemistry and Molecular Biology, Lublin Medical University, Lublin, Poland

Received March 28, 2008; Accepted May 20, 2008

DOI: 10.3892/or_00000060

Abstract. mtDNA4977, the most common deletion of the mitochondrial DNA, has been detected in different types of human neoplasia. The aim of the current study was to determine the prevalence of mtDNA4977 deletion in primary human endometrial carcinomas (EC) as compared with matched control samples. Thirty-seven matched control tissues and EC samples were enrolled, and the 4977-bp mtDNA deletion was investigated using a PCR-based technique. Deletion of mtDNA4977 was detected in 32 out of 37 (84%) matched control samples and in 30 out of 37 (81%) ECs. A statistically significant correlation of mtDNA4977/wild-type mtDNA ratios was noted between normal and cancerous human endometrial tissues (R=0.844, p<0.0001). The intensity ratio of mtDNA bands was significantly higher in normal samples than in malignant human endometrial tissues (p=0.021). The mean mtDNA4977/wild-type mtDNA ratio was significantly higher in the control group (0.655\pm0.379) than in the cancer group (0.570\pm0.04, p=0.048) of patients between 50 and 60 years of age. Notably, there was a relationship between clinical stage of the disease (stage II versus III) and the amount of mtDNA4977 in ECs (p=0.048). The sequence analysis of two randomly selected EC-positive cases confirmed that amplified fragments originated from mtDNA, and both encompassed deletion. In conclusion, we suggest that mitochondrial 4977-bp deletion is not specific to EC tissues. The accumulation of mtDNA4977 may be associated with aging processes, particularly in perimenopausal women affected by EC.

Introduction

Mitochondria are eukaryotic organelles involved in many intracellular metabolic pathways in which bio-fuels, such as fatty acids and carbohydrates, are converted into cellular ATP through the process of oxidative phosphorylation (OXPHOS) (1). The mitochondrion, in addition to the nucleus, possesses its own genome and has genetic machinery capable of producing proteins involved in bioenergetic processes (2). The mtDNA is a compactly organized, double-stranded, closed molecule of a full-length sequence weighing 16.5 kb (2). Human mtDNA encodes 13 polypeptides, all of which are the components of the respiratory chain/OXPHOS system, 2 ribosomal RNAs and 22 transfer RNAs (2,3). Moreover, human mtDNA contains a non-coding region, the D-loop (the displacement loop), which is implicated in the control of replication and transcription (4).

Since the 1930s, mitochondria have been implicated in the process of human tumorigenesis. Otto Warburg suggested that ‘respiration damage’ may play a pivotal role in cancer (5). Today, mitochondrial dysfunction is one of the most prominent features of cancer, as many reports have revealed a significant relationship between this phenomenon and the development and spread of human neoplasia (4,6,7). Genetic instability, point mutations and abnormal mtDNA expression have been detected in various types of human malignancies, including EC (8-14). For example, Liu and co-workers (8) sequenced the fragment of the mtDNA, encompassing the D-loop, 12S and 16S rRNA genes in 50 endometrial cancers and matched normal controls. Of the tumors, >50% carried one or more somatic changes in mtDNA and MI, in CCCCC TCCCC sequences, was found in the hyper-variable regions I and II of the D-loop (8). The frequency of the 16189T>C mitochondrial DNA variant was significantly higher in EC patients (43.1%) versus the control group (21.5%, p=0.009) (9). Somatic D-loop mtDNA mutations were frequently (63%) reported in type II EC-UPSC (uterine papillary serous carcinoma) (10). In another study, a total of 13 D310 mtDNA mutations were found in 56 (23%) primary malignant tumors, including one (1-bp insertion) out of six ECs (11). Notably, the haplogroup D and 5178A mitochondrial polymorphism may be significantly associated with EC risk of women from the Yunnan province in China (12). It is worth pointing out the recently published data of Wang.
and co-investigators (14). They suggested that accumulation of mtDNA alterations in primary human endometrial adenocarcinomas occur randomly and independently in individual cells or in a small sub-group of tumor cells. However, to the best of our knowledge (Medline© database), the prevalence of mtDNA4977 deletion in cancerous human endometrial tissues has yet to be investigated.

This study investigated the incidence of mtDNA4977 deletion in specimens collected from women affected by ECs and compared the results with the prevalence of this mitochondrial DNA alteration in matched normal control tissues.

Materials and methods

Patients. Forty specimens of primary human ECs and their matched normal control tissues (ovary, omentum or uterine cervix) were collected. The patients had undergone surgery at the Second Department of Gynecology, Lublin Medical University, Lublin, Poland because of EC between 2000-2006. Three patients were excluded due to insufficient data. Altogether, 37 women were enrolled. All patients gave informed consent before the specimens were collected according to institutional guidelines. The tumors were considered sporadic because none of the patients met the Amsterdam criteria for HNPCC syndrome. Neither initial chemotherapy nor hormonal or radiation therapy was performed prior to surgery. The standard surgical procedure in our Department was total abdominal hysterectomy with bilateral salpingo-oophorectomy. Lymph nodes were removed when the tissue collected at the dilatation and curettage procedure was found to be non-endometrioid, G3 (poorly-differentiated) endometrioid-type EC, or cancer infiltrating for more than a half of the myometrial wall at surgery. Clinical and pathological features of EC patients are summarized in Table I. The clinical stage of the disease was classified based on the FIGO staging system (15), whereas pathological assessment was performed at the Department of Pathology, Lublin Medical University, based on the World Health Organization classification (16).

PCR analysis. At surgery, the material collected was immediately snap-frozen in liquid nitrogen and stored at -80°C. DNA was isolated based on a standard technique using SDS-protease K, RNase digestion, phenol-chloroform extraction and ethanol precipitation (17). The two sets of PCR primers applied in the experiments, WT1 (5'-AATCAATTGGCGACCAATGG-3'; 7878-7897 bp) and WT2 (5’-CGCCTGGTTCTAGGAATAATGG-3’; 7979-7958 bp), amplified the D-loop segment of the mitochondrial genome (18). The second set of primers, L4 (5'-GCCCGTATTACCCCTATAAGC-3'; 8251-8270 bp) and H3 (5'-GTCTAGGGCTGTAGAAAGTC-3'; 13845-13826 bp), was used to evaluate the existence of the ‘common’ 4977-bp deletion of mtDNA (19). The 5594-bp mtDNA fragment was flanked by the L4 and H3 set of primers, whereas despite deletion, the product had a size of 617-bp. PCR amplification was carried out by applying the Advantage 2 PCR Kit (BD Biosciences, Palo Alto, CA) in a 50 μl reaction volume with 100 ng DNA template, 1 μl of Advantage 2 Polymerase Mix, 1 μl dNTP and 1 μl (50 pmol/μl) of each primer. After denaturation at 95°C for 5 min, the reaction mixture was cycled 30 times at the conditions described below: 95°C for 45 sec, 60°C for 45 sec and 72°C for 1 min, finally extended at 72°C for 5 min. The PCR-products were purified and separated on a 1.2% agarose gel at 50 V in 1X TBE buffer, and the products were visualized by ethidium bromide staining and photographed. DNA bands were analyzed densitometrically using Kodak D1 3.6 software, and the intensity of the mtDNA bands was measured. For each positive sample, the percentage of deleted mtDNA4977, with respect to wild-type mtDNA, was determined by the ratio between the deleted and wild-type mtDNA band densities.

To confirm the presence of mtDNA4977 in the cancerous human endometria, we randomly selected two positive cases (numbers 164 and 238). PCR-products were cut from agarose
gels and processed for direct DNA sequencing at the DNA Sequencing and Oligonucleotide Synthesis Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland. Sequences were compared using the BioEdit Sequence Alignment Editor v. 7.0.5.5 (20).

Statistical analysis. Statistical analyses were performed using the SPSS software package v. 14.0 PL for Windows. The groups were compared by the Mann-Whitney U test or Wilcoxon test when appropriate. mtDNA 4977/wild-type mtDNA ratios in matched control and cancerous human endometrial samples were correlated using the Spearman rank correlation test. P<0.05 was considered significant.

Results

The present study investigated 37 neoplastic endometrial and matched normal control samples for the prevalence of the mtDNA 4977 deletion using the PCR-based methodology. The mtDNA 4977 deletion was detected in 32 out of 37 (84%) matched control samples and in 30 out of 37 (81%) neoplastic endometrial tissues (Fig. 1). We noted a statistically significant correlation of mtDNA 4977/wild-type mtDNA ratios between normal control and cancerous endometrial samples (R=0.844, p<0.0001; Fig. 2). Table II summarizes the mean, median and SD for mtDNA 4977/wild-type mtDNA ratios. It is worth pointing out that the mean mtDNA 4977/wild-type mtDNA ratios was significantly higher in matched controls than in EC samples (p=0.021, Table II).

No correlation was reported between mtDNA 4977/wild-type mtDNA ratio and patient age (R=0.09, p=0.71, Spearman...
rank correlation test). Notably, there was a significant relationship between clinical stage of the disease (stage II versus stage III due to FIGO) and the amount of mtDNA₄₉₇₇ in neoplastic endometria (p=0.048, Mann-Whitney U test). Table III summarizes data on the association between clinico-prognostic features of EC patients and the mean mtDNA₄₉₇₇/wild-type mtDNA ratios in normal and cancerous samples. There were significant differences in the mean mtDNA₄₉₇₇/wild-type mtDNA ratios in the groups of women who were 50-60 years old, with advanced clinical stage of the disease, cancer infiltration less than half of the myometrial wall, lack of lymph node metastases and tumors infiltrating the uterine cervix (Table III).

We randomly sequenced a 617-bp mitochondrial DNA fragment flanked by the second round of PCR-primers in two EC-positive cases in order to confirm the presence of mtDNA₄₉₇₇ deletion. The sequence analysis confirmed that the amplified fragments originated from mtDNA and encompassed mtDNA₄₉₇₇ deletion (Fig. 3).

Discussion

Several studies have evaluated the existence of a number of mtDNA alterations, including point mutations, multiple gene deletions, and MI in different human cancerous tissues and cell lines (4,6,7). In general, most of the mtDNA mutations are heteroplasmic in nature, and the cells contain thousands of mutated or deleted mtDNA molecules that coexist with wild-type mitochondrial DNA (21-23). Notably, mutations of mtDNA have been reported to occur twice as much as described for nuclear DNA, and the defect phenotype associated with a particular mitochondrial alteration is generally expressed when the proportion of mutated mtDNA overcome a threshold (23,24).

Apart from investigations of various molecular genetic alterations during endometrial tumorigenesis (25-27), our group places emphasis on the evaluation of the prevalence of mtDNA alterations in various human malignancies, including EC (28,29). Homoplasmic MELAS A3243G mtDNA mutation
The mean mtDNA4977/wild-type mtDNA ratio was significantly higher in the control group (0.655±0.379) than in the cancerous group (0.570±0.404, p=0.048, Table III) for women between 50 and 60 years of age (n=17). These data suggest that aging factors may play an important role in the accumulation of mtDNA deletions, particularly in peri-menopausal patients affected by EC.

It is worth citing the study conducted by Thayer et al. (38), who identified this deletion in the leukocytes of all 71 individuals (ranging in age between 8 months to 99 years) of 21 maternal lines. All infants and children, who were free of any known mitochondrial disorders, displayed mtDNA4977 deletion. They also suggested the possibility of maternal transmission of 4977-bp mtDNA deletion in women without known mitochondrial disorders.

In conclusion, we suggest that mitochondrial 4977-bp deletion is not specific to EC tissues. The accumulation of mtDNA4977 is associated with aging processes, particularly in peri-menopausal women suffering from EC.

Acknowledgements

The authors are grateful to the staff of the Department of Pathology, Lublin Medical University, Lublin, Poland, for the pathological assessment of the material based on the WHO staging system. This study was supported by a grant from the State Committee for Scientific Research, Warsaw, Poland (PBZ-MEiN-8/2/2006 to K.F. and L.P.). We also thank Mr. B. Wuesthoff for careful editing of the manuscript.

References

