Green tea polyphenol epigallocatechin-3-gallate inhibits thrombin-induced hepatocellular carcinoma cell invasion and p42/p44-MAPKinase activation

ROLAND KAUFMANN1, PETER HENKLEIN2, PETRA HENKLEIN2 and UTZ SETTMACHER1

1Department of General, Visceral and Vascular Surgery, Medical Faculty at the Friedrich Schiller University Jena, Erlanger Allee 101, D-07747 Jena; 2Institute of Biochemistry, Charité, Humboldt University of Berlin, Monbijoustr. 2, D-10117 Berlin, Germany

Received December 30, 2008; Accepted February 4, 2009

DOI: 10.3892/or_00000349

Abstract. Thrombin has recently been demonstrated to promote hepatocellular carcinoma (HCC) cell migration by activation of the proteinase-activated receptor (PAR) subtypes PAR1 and PAR4, suggesting a role of these proteinase-receptor systems in HCC progression. In this study, we investigated the effect of (-)-epigallocatechin-3-gallate (EGCG), the major polyphenolic compound of green tea on thrombin-PAR1/PAR4-mediated hepatocellular carcinoma cell invasion and p42/p44 MAPKinase activation. In this study we used the permanent liver carcinoma cell line HEP-3B and two primary cultures established from surgically resected HCCs. We found that stimulation of HCC cells with thrombin, the PAR1-selective activating peptide, TFLLRN-NH2, and the PAR 4-selective activating peptide, AYPGKF-NH2, increased cell invasion across a Matrigel-coated membrane barrier and stimulated activation of p42/p44 MAPKinase. Both the effects on p42/p44 MAPKines, and on cell invasiveness induced by thrombin and the PAR1,4 subtype-selective agonist peptides were effectively blocked by EGCG. The results clearly identify EGCG as a potent inhibitor of the thrombin-PAR1/PAR4, p42/p44 MAPKinase invasive signaling axis in hepatocellular carcinoma cells as a previously unrecognized mode of action for EGCG in cancer cells. Moreover, the results suggest that (-)-epigalocatechin-3-gallate might have therapeutic potential for hepatocellular carcinoma.

Introduction

Several individual constituents of thrombin-generating pathways have been implicated in neoplasia including coagulation factors VIIa, IXa, Xa and thrombin (IIa) (1-5). Thrombin in particular has multiple cellular effects including induction of cell proliferation and motility, enhancement of vascular permeability, deposition of matrix fibrin, promotion of tumor cell seeding, adhesion to endothelium and extracellular matrix and enhancement of the metastatic capacity of tumors (6,7). These cellular effects of thrombin are mediated at least in part by proteinase-activated receptors (PARs), a subfamily of G protein-coupled receptors (reviewed in refs. 8-10). Among the PAR family members, PAR1 (11,12), PAR3 (13) and PAR4 (14) are targeted mainly by thrombin. PAR 2 (15) can be activated by trypsin, mast cell tryptase, neutrophil proteinase 3, tissue factor/factor VIIa/factor Xa, human kallikrein-related peptidases and membrane-tethered serine proteinase-1/matriptase 1, but not by thrombin (9,10). In the setting of cancer, the ability of thrombin to act via PARs was highlighted by the demonstration of PAR1 expression in carcinosarcoma and melanoma cells (16), and during the last few years, growing evidence for a function of the PAR family in neoplasia has been obtained (17). Especially for PAR1, a role in the progression of epithelial tumors including breast (18-20), colon (21) and kidney (22) has been shown.

Hepatocellular carcinoma (HCC) is a frequent malignancy worldwide (23) with an extremely poor prognosis, mainly because of HCC recurrence and metastases (24-26). Development and spreading of this tumor entity that are known to be accompanied with complex variations on molecular and cellular level have been studied extensively (reviewed in ref. 27). The understanding of the pathogenesis of HCC is still incomplete, and further studies in this field are warranted to find novel HCC treatment principles.

We have recently found that PAR1 and PAR4, coordinately regulate thrombin-induced hepatocellular carcinoma cell migration with the involvement of different intracellular effector systems including p42/p44 MAPKines. Therefore, a role for the thrombin-PAR1,4-triggered signaling in HCC progression has been suggested (28). In this context, it is
important to note that hepatocellular carcinoma (HCC) belongs to the 'coagulation type' tumors, in which there is an important role for thrombin formation within the tumor microenvironment (29,30). Therefore, a role of thrombin and its proteolytically activated receptors in HCC under in vivo conditions is very likely.

In the current study we assessed the role of (-)-epigallocatechin-3-gallate (EGCG), an active and major constituent of green tea. This compound has been shown earlier to possess anti-carcinogenic properties in various tumor entities including HCC (31-33). To assess the effect of EGCG on thrombin-induced invasive signaling in hepatocellular carcinoma cells, we used the human HCC cell line HEP-3B, and primary cultures established from surgically resected specimens of primary HCCs. We performed experiments on cell invasion across a Matrigel transmembrane barrier and on activation of p42/p44 MAPKinase phosphorylation. To estimate the involvement of the proteinase-activated receptors PAR and PARα, we elucidated whether EGCG was able to inhibit the invasive effect of PAR subtype-selective peptide agonists (PAR-APs). The results revealed EGCG as a novel antagonist of PAR signaling.

Materials and methods

Reagents. Human α-thrombin (3085 NIH-U/mg protein) was purchased from Haemochrom Diagnostica Supplies (Essen, Germany), epigallocatechin-3-gallate [(−)-cis-2-(3,4,5-Trihydroxyphenyl)-3,4-dihydro-1(2H)-benzopyran-3,5,7-triol 3-gallate] was from Sigma-Aldrich Chemie GmbH (Munich, Germany). The PARα-selective antagonist SCH 79797 [(N-3-cyclopropyl-7-[[4-(1-methylthethyl)phenyl]methyl]-7H-pyrrolol[3,2-f]quinazoline-1,3-diamine)] was purchased from Tocris Bioscience (Ellisville, MO, USA), the PARα-selective antagonist trans-cinnamoyl-YPGKF-amide from Peptides International (Louisville, KY, USA). Mouse monoclonal phosphospecific antibody to p42/p44 MAPKinase and polyclonal anti-p42/p44 MAPKinase antibody were from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

Cell culture

Primary hepatocellular carcinoma cell line HEP-3B. Human HEP-3B liver carcinoma cells (German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany, ACC 325 and ACC 141) were routinely cultured in RPMI-1640 supplemented with 10% fetal calf serum at 37°C in a humidified atmosphere of 5% CO2. The medium was changed every 2-3 days. For subculturing, treatment with trypsin/EDTA was used. Since trypsin itself activates PAR-type receptors the subcultured cells were re-fed sufficiently to remove all traces of trypsin.

Primary hepatocellular carcinoma (HCC) cultures. Primary cultures, PHC1 and PHC2, were established from surgically resected specimens of primary hepatocellular carcinomas from patients who underwent surgery in the Department of General, Visceral and Vascular Surgery as described (34). To confirm their epithelial nature and to exclude myofibroblast contamination, cell cultures were analyzed by a standard immunochemistry approach, using a monoclonal anti-cytokeratin antibody (DacoCytomation GmbH, Germany, clone MNF116) and an anti-smooth muscle actin antibody (DacoCytomation GmbH, clone 1A4). Cells were cultured in AmnioMax-100 (Invitrogen Corporation) at 37°C and 5% CO2 in a humidified incubator.

Peptide synthesis. The peptides TFLLRN-NH2 and AYPGKF-NH2 were synthesized by Fmoc strategy on an ABI-Peptide-Synthesizer 433A using TentaGel S RAM resin (capacity 0.24 mmol/g Rapp Polymere, Tübingen). The cleavage of the peptides from resin was performed with trifluoro acetic acid, 5% H2O und 3% triisopropylsilane. The peptides were precipitated by ether and lyophilized. Purification of the crude peptide was carried out by using preparative HPLC on a 50x250 mm Kromasil C18-column with a flow rate of 100 ml per minute under standard conditions. The correct mass was determined by MALDI mass spectrometry on a Voyager-DEPRO workstation.

Preparation of cell lysates. The cells were collected by centrifugation at 1,000 x g for 5 min (4°C), washed with PBS containing bacitracin (100 μg/ml), PMSF (0.1 mM), peptatin A (1.0 μg/ml) and leupeptin (2.0 μg/ml), pH 7.4, and centrifuged again. The pellet was treated with lysis buffer (PBS, containing 1% (v/v) Triton X-100, 0.5% (w/v) deoxycholate and 0.1% (w/v) SDS for 30 min at 4°C, resuspended and centrifuged at 30,000 x g for 15 min (4°C).

Western blotting. Proteins of cell lysates were separated on a 12% SDS/PAGE and transferred to nitrocellulose membranes (BioRad). After blocking in 1% BSA/1% skimmed milk for 1 h, the nitrocellulose strips were incubated overnight with the first antibody. Strips were washed 2 times with 0.05% (v/v) Tween-20 washing buffer, incubated for 45 min with the secondary antibody conjugated to horseradish peroxidase (Santa Cruz Biotechnology) and washed again 2 times as described above. In all of the experiments, the immunoblots were stripped and reprobed with antibodies to total protein to confirm equal protein loading. Secondary antibodies were detected by using chemiluminescence (ECL) Western blotting detection system (Amersham) by exposure to Kodak X-Omat film.

Protein assay. Protein was determined using the DC protein assay system from BioRad Laboratories according to the manufacturer's instructions.

Invasion assay. Tumor cell invasion was measured using a 48-well boyden chamber (NeuroProbe, Inc., Gaithersburg MD, USA). This assay was employed since it has been demonstrated that invasiveness in the assay correlates with the metastatic potential of a given cell line in vivo (36). HCC cell suspension (51 μl) (4x10^6 cells in the respective serum-free medium) with or without EGCG were placed in each upper chamber well and 27 μl of cell culture medium containing thrombin; the respective peptide agonist or vehicle in each lower well. Then, incubation for 48 h at 37°C in a humidified incubator with 5% CO2 was performed to allow cell invasion through a polycarbonate filter (0.5 mm in diameter, 8-μm pore size) precoated with solubilized tissue
basement membrane (Matrigel; BD Biosciences Discovery Labware, Bedford, MA, USA). After the incubation period, the filter was removed, and its upper side was wiped gently with a cotton tip swab to remove non-migrated cells. The migrated cells on the lower surface of the membrane were fixed with 96% ethanol, stained with Giemsa solution, and counted under a Zeiss Axiolab microscope. Data were acquired from three independent experiments, involving octuplicate measurements for each condition. To exclude effects by cell proliferation control experiments with the proliferation inhibitor, mitomycin (10 μg/ml, 3 h preincubation), were performed.

Estimation of cell viability. For testing the effect of EGCG on HCC cell viability cells were seeded into 24-well plates and treated with the respective inhibitor for 48 h. Then the viable cells were counted by trypsin blue dye exclusion test.

Statistical analysis. All results from migration experiments are expressed as means ± SD for one experiment performed
in octuplicate. Differences between data were tested by using the SPSS 13 for Windows computer program (SPSS Inc., Chicago, IL, USA). As the data were not normally distributed non-parametric Mann-Whitney U test was used. P<0.05 was considered to be significant.

Results

EGCG inhibits thrombin-induced increase in HCC cell invasion mediated by PAR$_1$ and PAR$_4$. A modified Boyden chamber Matrigel invasion assay with cells from the permanent HCC cell line HEP-3B and primary HCC cultures, established from surgically resected hepatocellular carcinomas was performed to determine if EGCG was capable of inhibiting thrombin-PAR-induced invasion. As demonstrated in Fig. 1A, thrombin (1.0 NHI-U/ml) significantly enhanced HCC cell invasion across the Matrigel barrier. To elucidate the PAR-subtype(s) involved in the thrombin-triggered stimulation of HCC cell invasion, we performed experiments with PAR-subtype selective agonists and antagonists (SCH 79797 for PAR$_1$, and trans-cinnamoyl-YPGKF-NH$_2$ for PAR$_4$). Both the PAR$_1$ selective agonist TFLLRN-NH$_2$ (100 μM; (36)) and the PAR$_4$ selective antagonist, trans-cinnamoyl-YPGKF-NH$_2$ [400 μM; tcY-NH$_2$; (37)], were used. As demonstrated in the insets of Fig. 1A-C, both SCH 79797 and trans-cinnamoyl-YPGKF-NH$_2$ reduced thrombin's stimulatory action on the HCC cell invasive capacity.

Pretreatment of the cells for 30 min with EGCG inhibited the effect of thrombin, the PAR$_1$-selective peptide TFLLRN-NH$_2$ and the PAR$_4$-selective peptide AYPGKF-NH$_2$ on p42/p44 MAPKinase activation that is involved in thrombin/PAR$_1$/4-stimulated HCC cell invasion. To explore the effect of EGCG on intracellular signaling level in HCC cells, we focused on p42/p44 MAPKines that are known to be critically involved in hepatocarcinogenesis (reviewed in refs. 41 and 42). Using the MEK inhibitors, PD 98059 and SL 327, both inhibited the effect of either, thrombin or the PAR$_1$ selective agonist peptide, TFLLRN-NH$_2$, or the PAR$_4$ selective agonist AYPGKF-NH$_2$ on p42/p44 MAPKinesactivation in HCC primary cultures.

<table>
<thead>
<tr>
<th>Cell culture</th>
<th>p42/p44 MAPKinase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thro</td>
<td>PAR$_1$</td>
</tr>
<tr>
<td>PHC1</td>
<td>91.6±8.3</td>
</tr>
<tr>
<td>PHC2</td>
<td>88.5±10.8</td>
</tr>
</tbody>
</table>

Thrombin (1.0 NHI-U/ml) and the PAR$_4$ selective agonist AYPGKF-NH$_2$ (400 μM; Fig. 1C) significantly enhanced the invasive capacity of cells from the permanent HCC cell line HEP-3B and from primary HCC cultures, PHC1, PHC2, across Matrigel. The receptor-inactive control peptides, NRLLFT-NH$_2$ for PAR$_1$, and YAPGKF-NH$_2$ for PAR$_4$, were unable to induce an effect on hepatocellular carcinoma cell invasion (data not shown), thereby unspecific effects of the peptide sequences may be excluded. For subtype selective receptor inhibition, the PAR$_1$-selective antagonist SCH 79797 [10 μM; (36)] and the PAR$_4$-selective antagonist, trans-cinnamoyl-YPGKF-NH$_2$ [400 μM; tcY-NH$_2$; (37)], were used. As demonstrated in the insets of Fig. 1A-C, both SCH 79797 and trans-cinnamoyl-YPGKF-NH$_2$ reduced thrombin's stimulatory action on the HCC cell invasive capacity.

EGCG inhibits thrombin-PAR$_1$/PAR$_4$-stimulated invasion of HCC cells is mediated by p42/p44 MAPKinase activation. Serum-starved HEP-3B cells, cells from PHC-1 and PHC-2 cells, respectively, were plated on top of a Matrigel-coated polycarbonate membrane. Cells were preincubated for 30 min with vehicle, MEK inhibitor, SL 372 (5.0 μM), and MEK inhibitor, PD 98059 (10 μM), respectively. Cell invasion in response to the respective stimulus was analysed after 48 h, as described in the legend for Fig. 1. Representative results from three independent experiments are shown. *P<0.05 vs. non stimulated control.

Table I. EGCG (10 μM) inhibits the effect of thrombin, the PAR$_1$-selective peptide TFLLRN-NH$_2$ and the PAR$_4$-selective peptide AYPGKF-NH$_2$ on p42/p44 MAPKinase activation in HCC primary cultures.

<table>
<thead>
<tr>
<th>Cell culture</th>
<th>Thro, % Inhibition ± SD</th>
<th>PAR$_1$, % Inhibition ± SD</th>
<th>PAR$_4$, % Inhibition ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHC1</td>
<td>91.6±8.3</td>
<td>84.3±12.4</td>
<td>89.0±7.4</td>
</tr>
<tr>
<td>PHC2</td>
<td>88.5±10.8</td>
<td>85.5±11.9</td>
<td>93.0±11.4</td>
</tr>
</tbody>
</table>

Data are from three independent experiments.
MAPKinases in thrombin-PAR1/PAR4 invasive effect. Similar results were observed in cells from the HCC primary cultures, PHC1 and PHC2 (Fig. 2).

Stimulation of HEP-3B cells with the PAR1 selective agonist peptide, TFLLRN-NH$_2$, or the PAR4 selective agonist AYPGKF-NH$_2$, for 20 min caused a significant increase in phospho-p42/p44 MAPKinases, consistent with a concurrence of MAPKinase activation (Fig. 3). In keeping with its ability to activate PAR1 and PAR4, thrombin also induced a strong increase in phosphorylation of p42/p44 MAPKinases in HEP-3B cells (Fig. 3). As seen in Fig. 3, EGCG (10 μM) potently inhibited the increase in p42/p44 activation in HEP-3B cells induced by thrombin, the PAR1 activating peptide TFLLRN-NH$_2$ and the PAR4 activating peptide AYPGKF-NH$_2$, respectively. As further demonstrated, EGCG (10 μM) by itself had no significant effect on MAPKinase phosphorylation basal level in HEP-3B liver carcinoma cells (Fig. 3). A comparable inhibitory effect of EGCG on p42/p44 activation could be observed in cells from the primary HCC cultures, PHC1 and PHC2 (Table I).

Discussion

In this study we found that (-)-epigallocatechin-3-gallate, an active and major constituent of green tea, inhibits the PAR1/PAR4-mediated effect of the serine protease thrombin on HCC cell invasiveness and p42/p44 MAPKinase activation. In cells from the permanent HCC cell line HEP-3B and cells from primary cultures established from surgically resected hepatocellular carcinoma specimens thrombin stimulates cell invasion by interaction with PAR subtypes, PAR1 and PAR4. Our conclusions are based on the ability of the PAR-targeted agonists for PAR1 and PAR4 to mimic the actions of thrombin and the block of thrombin action by the two PAR antagonists, SCH79797 for PAR1 (36), and trans-cinnamoyl-YPGKF-NH$_2$ for PAR4 (37). The receptor-inactive PAR-AP sequence-related peptides (NRLLFT-NH$_2$ for PAR1; YAPGKF-NH$_2$ for PAR4) did not affect HCC cell invasion, thereby establishing further the receptor selectivity of the PAR-activating peptides we used to activate PAR1 and PAR4.

As the main finding of the study we report that EGCG is an inhibitor of the thrombin-stimulated cell invasion in HCC cells mediated by the proteinase activated receptors, PAR1 and PAR4. This was concluded since EGCG inhibited both the effect of the endogenous PAR agonist thrombin and selective PAR subtype selective agonists (TFLLRN-amide for PAR1, and AYPGKF-amide for PAR4) that mimicked the effect of proteolytic PAR activation by thrombin. Moreover, EGCG inhibited the thrombin-PAR1/PAR4-induced phosphorylation-activation of p42/p44 MAPKinases, and inhibition of these kinases by pharmacological agents (PD 98059 and SL327) resulted in an inhibition of thrombin-PAR1/PAR4-stimulated invasive capacity of HCC cells. Therefore, it may be concluded that EGCG inhibits PAR1/PAR4-triggered invasion via inhibition of p42/p44 MAPKinases. Our conclusion is based on the experiments demonstrating that thrombin, the PAR1-AP and the PAR4-AP strongly increased the phosphorylation of p42/p44 MAPKinases and EGCG inhibited thrombin-PAR1/PAR4-stimulated p42/p44 MAPKinase phosphorylation in HCC cells. Therefore, it seems that p42/p44 MAPKinases activation may be required for the thrombin-PAR1/PAR4-stimulated HCC cell invasion.

Figure 3. PAR1-AP TFLLRN-NH$_2$ and PAR4-AP AYPGKF-NH$_2$ induce activation of p42/44 MAPKinase in HEP-3B cells. Serum-starved HEP-3B cells were treated with thrombin (1.0 NIH-U/ml), PAR1-AP TFLLRN-NH$_2$ (100 μM) or PAR4-AP AYPGKF-NH$_2$ (400 μM) for 20 min. The cell lysates were subjected to SDS-PAGE and Western blotting with an anti-phospho-p42/44 MAPKinases antibody. Immunoblot analysis from a representative experiment is shown with total p42/44 MAPKinase as control for constant protein loading in all lanes. The data are expressed as the fold increase over untreated control (mean ± SD) from three independent experiments in the histograms above the blots. P-p42/p44 = phosphorylated p42/p44 MAPKinases.
References

