Two-dimensional differential in-gel electrophoresis for identification of gastric cancer-specific protein markers

CHENG WU1*, ZHIWEN LUO1*, XUEYUN CHEN2, CHAOQUN WU3, DINGKANG YAO1, PENG ZHAO1, LIJIE LIU1, BIN SHI1 and LIANG ZHU1

Departments of 1Gastroenterology, 2Surgery, Changzheng Hospital, Second Military Medical University; 3State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200003, P.R. China

Received October 14, 2008; Accepted January 21, 2009

DOI: 10.3892/or_0000371

Abstract. Gastric cancer is the second most common fatal malignancy in the world. Proteomics studies of clinical tumor samples have led to the identification of specific protein markers of gastric cancer detection and better understanding the carcinogenesis of gastric cancer. Gastric cancer tissue of epithelial origin and adjacent normal mucosa were examined in pair by fluorescence 2-D differential in-gel electrophoresis proteomics analysis utilizing 2-D PAGE protein separation. Intensity changes of 33 spots were detected with statistical significance. Twenty-two out of the 33 spots were identified by MALDI-TOF MS or MS/MS. Of the 9 up-regulated proteins, 7 were identified, including heat shock protein 60 (HSP60), mutant desmin, effector cell proteinase receptor 1 splice form 1b, hypothetical protein, unnamed protein product, and manganese superoxide dismutase (MnSOD), a protein similar to α-actin. Of the 20 down-regulated proteins, 16 were identified, including selenium binding protein 1, fibrinogen γ, HSP27, tubulin α 6, zinc finger protein 160, prostaglandin F synthase, and eukaryotic translation elongation factor 1 α 1. Our results suggest that MnSOD may be a potential serum marker for molecular diagnosis of gastric carcinoma, and DIGE is a useful technique for screening differentially expressed proteins in cancer tissues.

Introduction

Gastric cancer is the second most common fatal malignancy in the world (1). It causes more than 750,000 deaths annually (2). About 800,000 new cases were diagnosed worldwide in 2000, with Asia accounting for 75% of these cases (3). In China, the mean annual mortality is estimated to be as high as 16 per 100,000 population, accounting for the leading cause of deaths among malignant tumors (4). The high mortality rate from gastric cancer is due to delayed detection and surgical resection at advanced stages of the disease (5). As people are not typically screened for gastric cancer, most cases are diagnosed at a time when the disease is well established. Therefore, early detection and better understanding of the gastric cancer are important for proper control of gastric cancer.

Proteomics studies of clinical tumor samples have led to the identification of cancer-specific protein markers, which provide a basis for developing new methods for early diagnosis and detection and clues to understand the molecular characterization of cancer progression (6-8). Several groups have earlier carried out proteomic studies of gastric cancer (9,10). A number of proteins with altered expression levels were identified using 2D electrophoresis followed by protein identification using mass spectrometry (11,12). The state of the art 2D gel system can be loaded with a few milligrams of protein and separate thousands of protein spots (13). Although the technique has been widely used and successfully applied in a variety of biological systems, several technical limitations exist. Subtle changes in experimental conditions would render it impossible to fully duplicate the protein expression patterns on a single 2D gel, and make it difficult to find protein changes between gels and quantify changes in protein expression.
Although a comparison of protein expression profiles from regular 2D gel electrophoresis can be carried out with the assistance of various software programs, it typically requires some computerized justification of 2D gel images so that two images can be superimposed and compared. These difficulties limit the speed and accuracy of quantitation of protein spots in normal 2D gel electrophoresis.

The fluorescence differential in-gel electrophoresis (DIGE) technique recently introduced by Amersham Biosciences, Inc., is aimed at improving reproducibility. The concept of DIGE has been described (14), where reactive dyes are used to label protein samples. Several fluorophores are available, allowing multiplexing of samples from two or three different sources on the same gel (e.g., normal surface mucosa, metaplasia or adenocarcinoma). The gel is scanned to detect sources on the same gel (e.g., normal surface mucosa, allowing multiplexing of samples from two or three different gastric cancer patients from Shanghai Changzheng Hospital were replicated from freshly isolated resection materials of the Second Military Medical University, China. Resections of stomach cancer patients were examined by a pathologist and the margin tissue samples were verified to be without cancer cells by histopathologic evaluation. The primary tumor, and verified to be without cancer cells by pathologic examination. The nuclear tissue was snap-frozen in liquid nitrogen after being washed with isotonic NaCl three times. All tissues were immediately snap-frozen in liquid nitrogen and solubilized in 300 μl modified lysis buffer (7 M urea, 2 M thiourea and 4% CHAPS) together with 5 μl/ml Halt Protease Inhibitor Cocktail (EDTA-free). The sample was vortexed and incubated for 40 min at room temperature, followed by centrifugation at 10,000 x g for 1.5 h at 4°C. Protein concentration was determined using a commercial Bradford reagent (Bio-Rad) using bovine γ-globulin as the standard, and then the samples were stored at -80°C until use.

Materials and methods

Sample preparation. Three human stomach tissue samples were replications from freshly isolated resection materials of gastric cancer patients from Shanghai Changzheng Hospital of the Second Military Medical University, China. Resections were examined by a pathologist and the margin tissue samples were replicated from non-cancerous regions, 5 cm apart from the primary tumor, and verified to be without cancer cells by pathology. The necrotic tissues were excluded as much as possible. All tissues were immediately snap-frozen in liquid nitrogen after being washed with isotonic NaCl three times. The clinicopathological characteristics are described in Table I. One of the patients received antineoplastic therapy prior to surgery. The human tissues were confirmed to contain no tumor cells by histopathologic evaluation. The experimental protocol was approved by the Health Human Research Ethics Committee of Changzheng Hospital.

Two-hundred milligrams of the sample was ground by liquid nitrogen and solubilized in 300 μl modified lysis buffer (7 M urea, 2 M thiourea and 4% CHAPS) together with 5 μl/ml Halt Protease Inhibitor Cocktail (EDTA-free). The sample was vortexed and incubated for 40 min at room temperature, followed by centrifugation at 10,000 x g for 1.5 h at 4°C. Protein concentration was determined using a commercial Bradford reagent (Bio-Rad) using bovine γ-globulin as the standard, and then the samples were stored at -80°C until use.

Table I. Clinicopathological characteristics of 3 stomach cancer patients.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Sex</th>
<th>Cell type</th>
<th>Stage</th>
<th>Borrmann type</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>M</td>
<td>Poor</td>
<td>IIIb</td>
<td>III</td>
</tr>
<tr>
<td>71</td>
<td>M</td>
<td>Poor</td>
<td>IIIb</td>
<td>II</td>
</tr>
<tr>
<td>50</td>
<td>F</td>
<td>Poor</td>
<td>IIIb</td>
<td>III</td>
</tr>
</tbody>
</table>

Table II. Experiment design of different fluorescent dye labeling for internal standard (Cy2) and samples 1, 2 and 3 (Cy3 or Cy5).

<table>
<thead>
<tr>
<th>Gel</th>
<th>Cy2</th>
<th>Cy3</th>
<th>Cy5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Internal standard</td>
<td>Normal 1</td>
<td>Cancer 2</td>
</tr>
<tr>
<td>2</td>
<td>Internal standard</td>
<td>Cancer 1</td>
<td>Normal 3</td>
</tr>
<tr>
<td>3</td>
<td>Internal standard</td>
<td>Normal 2</td>
<td>Cancer 3</td>
</tr>
</tbody>
</table>

Sample labeling. The experiment was designed according to the manufacturer's instructions (GE Healthcare) (Table II). An internal standard pool generated by combining equal amounts of extracts from all 3 pairs of tumor and normal mucosa tissues (totally 6 samples) was labeled with Cy2 fluorescent dye. It is able to minimize gel-to-gel variation by allowing the inclusion of an internal standard within each gel. All six samples evenly distributed between CyDye DIGE fluorescence Cy3 and Cy5 to minimize the variation between fluorescence. Fifty micrograms of each tumor and paired normal mucosa protein extracts were minimally labeled with Cy3 or Cy5 fluorescent dyes (400 pmol fluorescent 50 μg protein extracts). Labeling reaction was performed at 4°C for 30 min and quenched with 10 μl lysine for 10 min on ice in the dark. Equal amounts (50 μg) of quenched Cy3 or Cy5 labeled samples from each patient, together with the aliquoted 50 μg Cy2-labeled internal standard pool (described above), were focused using IPG strips (Ready Strip, Bio-Rad, pH 4-7, 13 cm) in the protein IEF Cell (Bio-Rad), with the addition of DeStreak Reagent (GE Healthcare). The IPG strips were equilibrated with equilibration buffers containing 2% DTT and 2.5% iodoacetamide for 10 min each sequentially. For the first electrophoresis, an electric potential of 30 V was applied for 12 h, 500 V for 1 h, 1000 V for 1 h, 8000 V for 1 h, and 500 V for 4 h. The second 12% SDS-PAGE was then carried out for all 3 gels simultaneously using Ettan DALT electrophoresis system.

2D DIGE and image analysis. Labeled proteins in each gel were visualized using a Typhoon 9410™ (GE Healthcare) fluorescence scanner at 488/600 nm for Cy2, 532/580 nm for Cy3 and 633/520 nm for Cy5 dyes. Images were analyzed with the help of the DeCyder™ software platform v 6.5 (GE Healthcare, USA). Gel image pairs were processed by the DeCyder™-DIA (Differential In-gel Analysis) software module to co-detect and differentially quantify the protein spots in the images, taking the internal standard as references.
sample as a reference to normalize the data, so the rest of the normalized spot maps could be compared among them. At the second stage, the DeCyder™-BVA (Biological Variation Analysis) software module was applied. BVA performs a gel-to-gel matching of the internal standard spot maps from each gel. Comparison between the different experimental groups and the control group was tested by Student’s t-test (p≤0.05).

Mass spectrometry analysis and database searching. A replicate gel was made with 1 mg samples, and stained by Coomassie Brilliant Blue and then matched with the DIGE gel maps. The matched proteins spots were excised from gels and cleaved with trypsin by in-gel digestion. The peptide extract from each tryptic digest was crystallized in 0.6 μl matrix solution (50% acetonitrile + 0.1% trifluoroacetic acid + 5 mg/ml CHCA) on the matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) target plate. All MALDI-TOF spectra were externally and internally calibrated for the correction of masses. The Peptide Mass Fingerprint produced by the MALDI-TOF MS were compared with the published databases of NCBI nr 20060526 (3654802 sequences; 1256120150 residues) using the MS-Fit module in Mascot (Matrix Science; http://www.matrixscience.com). A mass tolerance of 100 ppm was used for the peptide search. Protein scores greater than 64 are significant (p<0.05). When searched using MS/MS maps Individual ions scores >36 indicate identity or extensive homology (p<0.05). Two proteins that had the Peptide Mass Fingerprint, but were not matched in the database, were identified by PMF+MS/MS.

Results

2D gel separation of proteins. Three gels were scanned by different lasers, Cy2 dye for blue laser (488 nm), Cy3 dye for green laser (532 nm), and Cy5 dye for red laser (633 nm) as shown in Fig. 1A-C. In total, more than one thousand protein
spots were detected as shown in Fig. 1D (gel 1, 1898; gel 2, 1824; and gel 3, 1813) by DIGE.

Change of protein expression patterns between Cy3 and Cy5 image gel. After matching with the internal standard (Cy2), statistical analysis was performed to compare the mean ratio of expression from the spots of the cancer and normal tissue in the 2-DE maps. Thirty-three protein spots were chosen after showing a significance level of 1.5 times up- or down-regulation in expression compared to the normal group. A master image showing the statistically relevant spots was therefore obtained (Fig. 2). Of the 33 spots that were differentially expressed in gastric cancer vs normal tissues, 9 spots were up-regulated (spot 304, 313, 490, 866, 902, 919, 1190, 1213, 1386) and 24 down-regulated (spot 362, 380, 427, 431, 674, 712, 716, 860, 865, 941, 1115, 1134, 1146, 1159, 1250, 1294, 1434, 1435, 1449, 1539, 1583, 1642, 1673, 1747). The largest increase was up to 5-fold between the normal group and cancer, while the greatest decrease was down to 10-fold or lower.

Quantitation of protein expression. Part of the graph view and 3D simulation view of up- and down-regulated protein spots are shown in Fig. 3. The 3D peak of a protein spot was generated based on the pixel versus area data from the images obtained by the 2D Master Imager. Because of the low abundance of the proteins and the impact of dyes on the MS identify, a replicate gel with 1 mg protein extracts from cancer and normal tissues respectively was performed after statistical analysis of the DIGE map, and the replicate gel was stained by Coomassie Brilliant Blue. After comparison with the dye images, 27 protein spots were found and excised manually from the replicate 2-DE gel for further mass spectrum identification.

Protein identification by MALDI-TOF MS or MS/MS. The peptides produced by proteolytic digestion of 27 spots excised from the replicate 2-DE gel were identified by MALDI-TOF MS or MS/MS. Of them, five proteins with PMF map were not identified in the database, 20 proteins were identified...
Table III. Identification of spots from the 2-DE maps by MALDI-TOF MS or MALDI-TOF/TOF tandem mass spectrometry.

A. The up-regulated proteins

<table>
<thead>
<tr>
<th>Spot no.</th>
<th>Protein name</th>
<th>Regulation</th>
<th>Accession no.</th>
<th>Protein score</th>
<th>Obs.pI (103)</th>
<th>Obs.Mr (103)</th>
<th>Average ratio</th>
<th>t-test value</th>
<th>Sequence cov. (%)</th>
<th>Protein sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>304</td>
<td>Chaperonin (HSP60)</td>
<td>Up</td>
<td>gi</td>
<td>306890</td>
<td>83</td>
<td>5.70</td>
<td>61157</td>
<td>2.1386</td>
<td>0.003619</td>
<td>17</td>
</tr>
<tr>
<td>313</td>
<td>Mutant desmin effector cell proteinase receptor 1 splice form 1b</td>
<td>Up</td>
<td>gi</td>
<td>19908424</td>
<td>103</td>
<td>5.21</td>
<td>53544</td>
<td>2.0555</td>
<td>0.002593</td>
<td>25</td>
</tr>
<tr>
<td>490</td>
<td>Hypothetical protein</td>
<td>Up</td>
<td>gi</td>
<td>31873302</td>
<td>68</td>
<td>7.57</td>
<td>47405</td>
<td>1.5531</td>
<td>0.009242</td>
<td>16</td>
</tr>
<tr>
<td>919</td>
<td>Unnamed protein product</td>
<td>Up</td>
<td>gi</td>
<td>10435239</td>
<td>67</td>
<td>4.76</td>
<td>59383</td>
<td>5.0270</td>
<td>0.001426</td>
<td>15</td>
</tr>
<tr>
<td>1213</td>
<td>predicted: similar to actin, α, cardiac; α-actin (Pan troglodytes)</td>
<td>Up</td>
<td>gi</td>
<td>55641797</td>
<td>116</td>
<td>5.23</td>
<td>42334</td>
<td>1.6482</td>
<td>0.004129</td>
<td>24</td>
</tr>
<tr>
<td>1298</td>
<td>Manganese superoxide dismutase</td>
<td>Up</td>
<td>gi</td>
<td>34707</td>
<td>81</td>
<td>8.35</td>
<td>24866</td>
<td>2.4171</td>
<td>0.006526</td>
<td>9</td>
</tr>
</tbody>
</table>

B. The down-regulated proteins

<table>
<thead>
<tr>
<th>Spot no.</th>
<th>Protein name</th>
<th>Regulation</th>
<th>Accession no.</th>
<th>Protein score</th>
<th>Obs.pI (103)</th>
<th>Obs.Mr (103)</th>
<th>Average ratio</th>
<th>t-test value</th>
<th>Sequence cov. (%)</th>
<th>Protein sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>380</td>
<td>Selenium binding protein 1</td>
<td>Down</td>
<td>gi</td>
<td>16306550</td>
<td>161</td>
<td>5.93</td>
<td>52928</td>
<td>-2.0807</td>
<td>0.007936</td>
<td>37</td>
</tr>
<tr>
<td>427</td>
<td>Fibrinogen γ</td>
<td>Down</td>
<td>gi</td>
<td>223170</td>
<td>70</td>
<td>5.54</td>
<td>46823</td>
<td>-1.9469</td>
<td>0.004727</td>
<td>20</td>
</tr>
<tr>
<td>674</td>
<td>Human Muscle Fructose 1,6-Bisphosphate Aldolase Complexed With Fructose 1,6-Bisphosphate</td>
<td>Down</td>
<td>gi</td>
<td>4930291</td>
<td>116</td>
<td>5.54</td>
<td>46823</td>
<td>-2.8840</td>
<td>0.006495</td>
<td>24</td>
</tr>
<tr>
<td>716</td>
<td>Tubulin α 6</td>
<td>Down</td>
<td>gi</td>
<td>43839309</td>
<td>84</td>
<td>4.96</td>
<td>50548</td>
<td>-1.7639</td>
<td>0.00983</td>
<td>26</td>
</tr>
<tr>
<td>860</td>
<td>Eukaryotic translation elongation factor 1 α 1</td>
<td>Down</td>
<td>gi</td>
<td>48734966</td>
<td>69</td>
<td>9.10</td>
<td>50433</td>
<td>-1.9516</td>
<td>0.002592</td>
<td>16</td>
</tr>
<tr>
<td>865</td>
<td>Zinc finger protein 160</td>
<td>Down</td>
<td>gi</td>
<td>38788302</td>
<td>67</td>
<td>9.44</td>
<td>96788</td>
<td>-1.8226</td>
<td>0.003333</td>
<td>11</td>
</tr>
<tr>
<td>1115</td>
<td>Drug-protein interactions: Structure of Sulfonamide Drug Complexed With Human Carbonic Anhydrase I</td>
<td>Down</td>
<td>gi</td>
<td>515109</td>
<td>126</td>
<td>28778</td>
<td>-2.0881</td>
<td>0.005951</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1134</td>
<td>Mitochondrial short-chain enoyl-Coenzyme A hydratase 1, precursor</td>
<td>Down</td>
<td>gi</td>
<td>4286220</td>
<td>71</td>
<td>8.34</td>
<td>31835</td>
<td>-3.0766</td>
<td>0.0013</td>
<td>23</td>
</tr>
<tr>
<td>1146</td>
<td>Prostaglandin F synthase</td>
<td>Down</td>
<td>gi</td>
<td>63898920</td>
<td>74</td>
<td>8.05</td>
<td>37220</td>
<td>-3.8801</td>
<td>0.008038</td>
<td>26</td>
</tr>
<tr>
<td>1159</td>
<td>Heat shock protein 27</td>
<td>Down</td>
<td>gi</td>
<td>662841</td>
<td>79</td>
<td>7.83</td>
<td>22427</td>
<td>-1.7393</td>
<td>0.008047</td>
<td>37</td>
</tr>
<tr>
<td>1250</td>
<td>Chain C, Crystal Structure of Lipid-Free Human Apolipoprotein A-I</td>
<td>Down</td>
<td>gi</td>
<td>90108666</td>
<td>68</td>
<td>5.27</td>
<td>28061</td>
<td>-1.6441</td>
<td>0.006301</td>
<td>22</td>
</tr>
<tr>
<td>1294</td>
<td>Biliverdin reductase B [flavin reductase (NADPH)]</td>
<td>Down</td>
<td>gi</td>
<td>32891807</td>
<td>98</td>
<td>7.13</td>
<td>22219</td>
<td>-1.8057</td>
<td>0.008066</td>
<td>49</td>
</tr>
<tr>
<td>1435</td>
<td>Chain A, Human Serum Albumin Mutant R218h Complexed With Thyroxine (3,3',5,5'-tetraiodo-L-thyronine) and Myristic Acid (tetradecanoic acid)</td>
<td>Down</td>
<td>gi</td>
<td>31615333</td>
<td>76</td>
<td>5.66</td>
<td>68406</td>
<td>-10.9719</td>
<td>0.007126</td>
<td>17</td>
</tr>
<tr>
<td>1539</td>
<td>Chain A, crystal structure of the Ga module complexed with human serum albumin Ga module</td>
<td>Down</td>
<td>gi</td>
<td>55669910</td>
<td>78</td>
<td>5.57</td>
<td>67174</td>
<td>-8.5195</td>
<td>0.007528</td>
<td>15</td>
</tr>
<tr>
<td>1642</td>
<td>Chain F, Cypa Complexed With Hvphia, Chain H, Monoclinic Form of Human Peroxiredoxin 5</td>
<td>Down</td>
<td>gi</td>
<td>2981764</td>
<td>77</td>
<td>7.82</td>
<td>18098</td>
<td>-2.6387</td>
<td>0.007108</td>
<td>43</td>
</tr>
</tbody>
</table>
successfully by MALDI-TOF MS, and two proteins were identified successfully by MALDI-TOF MS/MS. The data of the 23 proteins identified from the 22 spots are summarized in Table III. Either spot 313 (mutant desmin; effector cell proteinase receptor 1 splice form 1b) or 1642 (Chain F, Cypa Complexed With Hvgpia; Chain H, Monoclinic Form of Human Peroxiredoxin 5) comprised two proteins, and spot 427 and 431 were identified to be the same protein, fibrinogen γ. The significantly up- or down-regulated proteins might be the biomarkers of gastric cancer. Fig. 4A shows a typical MALDI-TOF peptide mass fingerprint for one of the proteins that was found to be up-regulated in gastric cancer. Corresponding amino acid residue numbers are indicated on peaks that were matched to the identified protein based on a query of the database NCBI nr. The probability based mouse score of the protein is shown in Fig. 4B. The protein
identified was MnSOD, with a mouse score of 76 (protein scores greater than 64 are significant, p<0.05), which corresponds with a coverage of 9%.

Discussion

Two-dimensional differential gel electrophoresis is a novel technique for proteomic analysis (16,17). In 2D-DIGE, a relatively small amount of protein extracts from more than two sources is labeled with reactive cyanine dyes that label lysine residues and fluoresce at different wavelengths. The labeled samples are then mixed and analyzed in the same large format 2D gel. Multi-wavelength imaging allows for quantitation of the precise ratio of different proteins in each sample. The unique aspect of this technology allows for migration and analysis of the multi-labeled protein samples on the same gel. Each gel includes an internal standard sample, which is created by pooling an aliquot of all biological samples in the experiment and labeling it with one of the CyDye DIGE Fluor minimal dyes (usually Cy2 for a 3-dye experiment). The samples are evenly labeled with CyDye DIGE Fluors Cy3 and Cy5 to minimize variation between flours (Table II). This uniquely designed 2-D DIGE technique has a number of advantages: accurate quantification and accurate spot statistics between gels, increased confidence in matching between gels, flexibility of statistical analysis depending on the relationship between samples, and separation of induced biological change from system variation from inherent biological variation. So this technique appears to have advantages of adequate sensitivity, high reproducibility and a wide dynamic range (16).

In this study, we used cyanine dyes that afford labeling of only 1 or 2% of all proteins because of solubility constraints. To supplement the protein used for mass spectrometry, we used a replicate gel with 1 mg samples of unlabeled protein sensitive to enrich each protein spot for MS identification. This analysis identified 9 up-regulated protein spots and 24 down-regulated proteins in gastric cancer tissues. Totally 27 excised proteins spots on the replicate gel were identified by MALDI-TOF MS. Twenty-two spots were identified successfully by MS or MS/MS. Five of the 27 spots presented spectra, but no novel marker protein for gastric cancer was identified. We obtained seven over-expressed proteins and 16 under-expressed proteins (Table III).

The differentially expressed proteins could be divided into seven groups based on their functions: molecular chaperones, cytoskeleton proteins, metabolic enzymes, proteins associated with cell cycle, proteins associated with cell proliferation differentiation and apoptosis, and proteins associated with lipid metabolism. HSPs are molecular chaperones which regulate the activity of multiple intracellular signaling intermediates, many of which are intimately involved in the control of the apoptotic signaling pathways. HSPs include anti-apoptotic and pro-apoptotic proteins that interact with a variety of cellular proteins (18). HSP27 and HSP70 are anti-apoptotic, while HSP60 and HSP10 are pro-apoptotic. This suggests that the balance of HSP proteins can determine the fate of stressed cells. HSP60 mainly refolds and prevents the aggregation of denatured proteins (19). In our research, we found that two heat shock proteins (HSP), HSP 60 and HSP27, were differently expressed in cancer tissues: HSP60 was up-regulated while HSP27 was down-regulated in cancer tissues. He et al (20) reported that HSP 60 was up-regulated in gastric tumor tissues. Kamiya et al (21) reported that among the various virulence factors of Helicobacter pylori (H. pylori) the role of its heat shock protein 60 in mucosal inflammation after H. pylori infection was examined, and the HSP60 epitope was also detected on the surface of both human gastric cancer cells (MKN45, KATOIII and MKN28) and human gastric biopsy specimens. H. pylori is generally accepted as the first known bacterial risk factor for the development of gastric cancer, and therefore HSP 60 may have some association with H. pylori infection and with the occurrence and progression of gastric cancer. The role of HSP27 in gastric cancer is not clear. Kapranos et al (22) found that HSP27 expression was detected in 68 (79%) out of 86 cases of normal gastric mucosa, and in 54 (62.7%) out of 86 cases of gastric carcinoma. Our DIGE results were consistent with theirs. HSP27 was also found to be associated with lymph node metastasis, suggesting that HSP27 was down-regulated in gastric cancer. On the contrary, Ryu et al (10) reported that cytoplasmic proteins (transgelin, prohibitin and HSP27) were up-regulated in gastric cancer tissues. These conflicting results may suggest that shock protein abundance varies in different stages of gastric cancer, which needs further study. Chen et al (23) reported that HSP27 was expressed in human gastric cancer, whereas non-tumorous, non-regenerative human foveolar epithelium did not express HSP27. In our research, HSP27 was down-regulated on DIGE. The discrepancy may be either related to the different nature or the different stage of the gastric cancer.

The term cytoskeleton is commonly used to describe the subcellular framework of filamentous contractile and structural proteins that function in motility-related activities and in maintenance of cell shape. We identified that cytoskeleton protein mutant desmin was up-regulated but tubulin α 6 and eukaryotic translation elongation factor 1 α 1 (eEF1A1) were down-regulated in gastric cancer. These cytoskeleton proteins are necessary for mitosis and cell proliferation and are primarily located in the epithelium. The centrosome protein of tubulin, including α- and γ-tubulin, was reported to be overexpressed in premalignant lesions and breast cancer (24,25). Giannieri et al (26) reported that there was a significant difference in α- and β-tubulin protein expression in polyps and invasive cancer of the rectum, implying a possible role of tubulins in the development of invasive, but not preinvasive cancer. α-tubulin has also been reported to be differentially expressed in the normal colon compared to colon tumors (27) and α-tubulin was down-regulated during differentiation of HT29-D4 cells (28). Eukaryotic translation elongation factor 1 α, which is an abundant member of the actin bundling protein, is the cofactor of eukaryotic protein synthesis responsible for binding aminoacyl-tRNA to ribosome during polypeptide elongation. eEF1A1 is widely expressed, whereas eEF1A2 is normally expressed only in neurons and muscle (29). Tomlinson et al (30) reported that eEF1A2 should be considered as a putative oncogene in breast cancer, which may be a useful diagnostic marker and therapeutic target for a high proportion of breast tumors. They also think that oncogenicity of eEF1A2 may be related
to its role in protein synthesis or to its potential non-canonical functions in cytoskeletal remodelling or apoptosis.

Several metabolic enzymes were found up- or down-regulated in gastric cancer. Which include prostaglandin (PG) F synthase, fructose 1,6-bisphosphate aldolase (FBP-Ald), carbonic anhydrase I (CA 1), manganese superoxide dismutase, mitochondrial short-chain enoyl-coenzyme A hydratase 1, precursor, biliverdin reductase B [flavin reductase (NADPH)], Chain F Cypa and peroxiredoxin 5 (Prdx 5). Prostaglandin (PG) F synthase is one of the major prostanoids produced by the kidneys. Recent studies (31) suggest that up-regulation of PGF synthase, especially cyclooxygenase 2 (cox-2) plays an important role in carcinogenesis of gastrointestinal carcinoma. Carbonic anhydrase (CA) is a zinc-containing metalloenzyme that catalyzes reversible hydration of CO2.

The role of the enzyme has been well established, the main function of which is to produce HCO3 for the intermediate metabolism and to maintain pH, water, and ion equilibrium in the body (32). CA I protein is associated with cell growth. It is likely expressed by rapidly proliferating tumor cells or cells that are about to enter the proliferative state, because the CA domain and other elements of the molecule take part in the regulation of cell growth in certain tumor cell types (33). Wang et al (9) found that it was overexpressed in gastric carcinoma. Manganese superoxide dismutase (MnSOD) is a tetrameric enzyme with four identical subunits each harboring an Mn2+ atom, which catalyzes the dismutation of two molecules of superoxide anion into water and hydrogen peroxide. Chen et al (34) reported that MnSOD can mediate growth inhibition of gastric cancer cell line SGC7901. Czeczot et al (35) also found that MnSOD in gastric cancer was higher than that in healthy stomach tissues. There are studies showing that enhanced expression of MnSOD in progressive gastric cancer was related to postoperative 5-year survival, and to sensitivity to chemotherapy (36,37) Yoshihara et al (38) reported similar results in Japanese patients. Thus, MnSOD is a potential biomarker of gastric cancer.

Proteins associated with cell cycle, proliferation, differentiation and apoptosis as well as lipid metabolism were found to be differently expressed in gastric cancer. He et al (21) found that, like fibrinogen γ, zinc finger protein 160 and apolipoprotein A1 (ApoA1), SeBP 1 was also down-regulated in gastric cancer tissues. There are also an unnamed protein product and a hypothetical protein that were up-regulated in cancer tissues. They may have a specific pathological role in gastric carcinogenesis. Further comprehensive evaluation considering all the altered factors may result in the discovery of a biomarker index for effective assessment of the disease and may provide in-depth information for better understanding the pathogenesis of gastric cancer.

In summary, we analyzed primary tumor biopsies and normal tissues in the same patients, and observed the up- and down-regulated proteins in human gastric cancer tissue. It is hoped that these results would correlate with clinical data in future studies to define clinically useful biomarkers. The approach we described in this study has shown that the high-throughput 2D-DIGE analysis might be a valuable tool for proteomic study and biomarkers screening method. The identification of the function of protein found in proteomic studies is essential to provide a more effective therapy for patients suffering from gastric carcinoma. A primary tumor biopsy may contain several different cell types other than carcinoma cells, so the exact definition for major cellular changes during the conversion of normal to stomach malignancy is limited.

The result also showed that carcinogenesis of gastric cancer is a complex process involving multiple factors such as enzyme metabolism, lipid metabolism, and cell proliferation, differentiation and apoptosis.

Acknowledgements

We thank Jianwen Hu and Zhenfen Zhang for instructions of the English language revision.

References

