Expression of the tumor suppressor ARHI inhibits the growth of pancreatic cancer cells by inducing G₁ cell cycle arrest

XINGQING LU¹, JIAMING QIAN¹, YINHUA YU², HONG YANG¹ and JINGNAN LI¹

¹Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730; ²Department of Gynecology, Ob/Gyn Hospital of Fudan University, Shanghai 200011, P.R. China

Received April 6, 2009; Accepted May 27, 2009
DOI: 10.3892/or_00000483

Abstract. A Ras homologue member I (ARHI) is an imprinted tumor suppressor gene whose expression is frequently lost in pancreatic cancers. This small GTP-binding protein is a member of the Ras superfamily with significant homology to Ras. In contrast to the Ras oncogene, ARHI has been shown to have anti-proliferative effects, but the mechanisms by which it inhibits pancreatic cancer cell proliferation and induces cell cycle arrest remain unclear. By generating stable transfectants, ARHI was reexpressed in pancreatic cancer cells that had lost its expression. Flow cytometry analysis indicated that ARHI blocked cell cycle progression at the G₁ phase in pancreatic cancer cells. In ARHI transfectants, phosphorylated AKT protein expression decreased compared to that of vector transfectants. Reexpression of ARHI increased the expression of the cyclin-dependent kinase (CDK) inhibitor (CKI) p21WAF1, through the accumulation of p53 protein by the inhibition of PI-3K/AKT signaling. In addition, ARHI enhances expression of CKI p27kip1 through the inhibition of PI-3K/AKT signaling. The expression of cyclins A and D₁ decreased, while cyclin E was not affected under the same conditions. The activities of cyclin-dependent kinases 2 (CDK2) and 4 (CDK4) were reduced in ARHI transfectants. These results suggest that the PI-3K/AKT pathway plays a pivotal role in the pathogenesis of pancreatic cancer and ARHI exerts its growth-inhibitory effects through modulation of several key G₁ regulatory proteins, such as p21WAF1, p27kip1, CDK2, CDK4 and cyclins A and D₁. ARHI represents a modulator of cancer cell proliferation and may play an important role in the development of pancreatic cancer.

Introduction

Pancreatic cancer is one of the most lethal cancers in the industrialized world and the sixth leading cause of cancer-related death in China (1). The incidence of pancreatic cancer almost equals that of pancreatic cancer-related mortality, with fewer than 20% of patients surviving the first year and with only 3% surviving 5 years after the diagnosis (2-4). This poor outcome motivates ongoing molecular research to understand tumor biology. A variety of regulatory mechanisms contribute to the development and growth of pancreatic cancer. The up-regulation of numerous oncogenic genes and the down-regulation of tumor suppressor genes are responsible, in part, for the uncontrolled growth, survival and metastasis of pancreatic cancer cells during the development of this disease. The genetic abnormalities found in pancreatic cancer affect the mechanisms controlling G₁ to S cell cycle progression and cellular proliferation.

A Ras homologue member I (ARHI) is a maternally imprinted human tumor suppressor gene that encodes a 26-kDa small G protein with 50-60% amino acid homology to Rap and Ras. In ovarian and breast cancers, reexpression of ARHI inhibits cancer cell growth in vitro and in vivo, induces p21WAF1 and down-regulates cyclin D₁ promoter activity (5). Recent studies showed that ARHI regulates autophagy and tumor dormancy in ovarian cancer (6).

ARHI is expressed in normal pancreatic epithelial cells, but its expression is lost or down-regulated in pancreatic cancers (7). The induction of this gene into pancreatic cancer cells that lack ARHI expression can block epidermal growth factor (EGF)-mediated signaling through RAS/mitogen-activated protein kinase, suppress STAT3 activity and induce apoptosis in pancreatic cancers (Hu and Lu, unpublished data). In this study, we further demonstrated that ARHI reexpression suppresses the proliferation of pancreatic cancer cells by modulating expression of cell cycle regulatory proteins.

Materials and methods

Cell culture and treatment. The human pancreatic carcinoma cell lines PANC-1 (anaplastic adenocarcinoma) and MiaPaCa-2
(poorly differentiated adenocarcinoma) were obtained from Professor Zhang Wei (Cancer Research Institute, Chinese Academy of Medical Sciences, Beijing, China). PANC-1 and MiaPaCa-2 cells and their G418-resistant stable transfectants were cultured in Dulbecco’s modified Eagle’s medium (DMEM) (Gibco BRL) supplemented with 10% fetal bovine serum (Gibco BRL), without any antibiotics in an incubator with 5% CO₂ at 37°C. To analyze the effect of EGF on AKT expression and cell proliferation, pancreatic cancer cell lines were grown to 70-80% confluency in the corresponding medium containing 10% fetal bovine serum. At that point, cells were starved for 24 h in serum-free medium and finally treated for the specified time with 50 ng/ml EGF in serum or with medium alone.

Generation, selection and analysis of stable transfectants. PANC-1 or MiaPaCa-2 cell lines were transfected with the pIRES2-EGFP-ARHI constructs or with an empty vector pIRES2-EGFP plasmid as a control, using Lipofectamine 2000 (Invitrogen). Two days after transfection, the cells were placed into the selection medium containing 900 μg/ml G418 (Gibco BRL) for PANC-1 cells; 800 μg/ml G418 for MiaPaCa-2. Fourteen days after selection, stable G418-resistant cell colonies had formed. Stable pools were used for experiments. ARHI protein expression was analyzed by Western blotting using the ARHI antibody.

Cell growth assay. Pancreatic cancer cells and their stable transfectants (ARHI or vector) (1x10⁵) were seeded in 6-well plates. At different intervals, cells were trypsinized and viable cells that excluded trypan blue dye were counted in a hemocytometer. The average numbers of cells per milliliter were calculated and plotted as a function of time.

Cell cycle arrest analysis. Cells were plated at a density of 5x10⁵ cells/plate in 60-mm tissue culture dishes. Cell cycle distribution was analyzed by flow cytometry. Briefly, pancreatic cancer cells and their stable pool transfectants were washed once with phosphate-buffered saline (PBS), harvested by trypsinization, collected and then resuspended in 300 μl of PBS and fixed with 5 ml of ice-cold 75% ethanol overnight. The cells were sedimented by centrifugation and resuspended in PBS containing 1 mg/ml each of glucose and RNaseA and incubated at room temperature for 30 min. Then, propidium iodide solution (1 mg/ml in distilled water) was added to each sample and incubated in the dark for an additional 30 min. The cells were sedimented by centrifugation and resuspended in 300 μl washing buffer containing 1 mg/ml of propidium iodide and 50 μg/ml of RNaseA. The samples were analyzed via flow cytometry (Coulter Epics XL). Cell cycle analysis software was used to analyze the percentage of cells in the different phases of the cell cycle. Three different experiments were performed and the results are reported as means ± standard error.

Western blot analysis. Cells were washed twice with ice-cold PBS followed by lysis for 15 min in a buffer (20 mM sodium phosphate buffer, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 0.5% sodium deoxycholate, pH 7.4) supplemented with 1 mM phenylmethylsulfonyl fluoride (PMSF), sodium orthovanadate (1 mM, pH 7.4) and a mixture of phosphatase inhibitors. Cells were then scraped from the plates and the cell lysates were clarified by centrifugation for 15 min at 12,000 x g and 4°C. The concentration of total protein was quantified using the Bicinchoninic Acid (BCA) method (Applygen). Total cell protein (50 μg) was separated via 10 or 12% SDS-PAGE, transferred to a PVDF membrane and blocked for 2 h at room temperature or overnight at 4°C with 5% non-fat milk/TBS-Tween (TBS-T). Primary antibodies were diluted in blocking buffer and incubated overnight at 4°C. To detect target proteins, we incubated the membranes with antibodies against: ARHI (from the laboratory of Dr Yu), p53 (Santa Cruz), p27Kip1 (Santa Cruz), cyclins A, D1 and E (Santa Cruz), CDK2, 4 (Santa Cruz), phospho-AKT polyclonal, AKT (Cell Signaling Technology, Beverly, MA) and actin (Santa Cruz), respectively. HRP-conjugated secondary antibodies (Santa Cruz, anti-mouse and anti-rabbit) were diluted 1:2000 and incubated for 1 h at room temperature with gentle rocking. Proteins were visualized using ECL detection reagents (Applygen) and exposure to film (Kodak Biomax MR, Rochester, NY).

Results

ARHI reexpression inhibited growth of pancreatic cancer cells. Two pancreatic cancer cell lines (PANC-1, MiaPaCa-2) were transfected with pIRES2-EGFP-ARHI. Stable transfectants were selected by G418. They exhibited clear ARHI expression in stable transfectants. Western blot analysis was performed on PANC-1 or MiaPaCa-2 stable transfectants with pIRES2-EGFP-ARHI (ARHI) or pIRES2-EGFP (vector). Normal pancreas was used as positive control. β-actin was included as the loading control. The data shown are representative of three independent experiments.

Figure 1. ARHI expression in stable transfectants. Western blot analysis was performed on PANC-1 or MiaPaCa-2 stable transfectants with pIRES2-EGFP-ARHI (ARHI) or pIRES2-EGFP (vector). Normal pancreas was used as positive control. β-actin was included as the loading control. The data shown are representative of three independent experiments.

ARHI reexpression caused cell cycle G₁ arrest. Since ARHI reexpression exerted marked effects on cellular proliferation as revealed by growth curvature assays (Fig. 2), we analyzed the effects of this suppression on cell cycle progression.
PANC-1 or MiaPaCa-2 cell lines, stably transfected with the ARHI constructs or with an empty vector, were examined by flow cytometric analysis and the percentages of cells in the S and G1 phases were determined. As shown in Fig. 3, cells reexpressing ARHI were arrested in the G1 phase of the cell cycle. The fraction of cells in the G1 phase increased from 56 to 75% (PANC-1) or 54 to 67% (MiaPaCa-2) compared with vector transfectants. No change in G2-M cells was observed. These results indicated that reexpression of ARHI strongly impacted cellular proliferation, which led to a reduction of S phase cells and cellular arrest in the G1 phase.

Down-regulation of phosphorylated Akt (p-AKT) in ARHI transfectants. The PI-3K/AKT pathway is an important regulatory pathway governing cell cycle progression and apoptotic response (9,10). We therefore investigated whether ARHI expression blocks the activation of PI-3K/AKT signaling in pancreatic cancer cells. As the activity of AKT is regulated by phosphorylation, we examined the level of p-AKT in PANC-1 or MiaPaCa-2 cells stably transfected with ARHI or vector at different time points. As shown in Fig. 4, the level of p-AKT in ARHI transfectants was down-regulated compared with vector controls, but total levels of AKT protein remained unchanged.
ARHI reexpression increased the expression of p21WAF1 and p53 through the inhibition of the PI-3K/AKT signaling pathway. Our present data show that ARHI down-regulated p-AKT expression. Previous studies have reported that the activation of PI-3K/AKT induces translocation of MDM2 from the cytoplasm to the nucleus, where it negatively regulates p53 (11). To provide further evidence that AKT may be a crucial target of ARHI, we further investigated the effects of ARHI on another AKT target, p53, using Western blot analysis on PANC-1 pancreatic cancer cells. In agreement with the observed cell cycle arrest induced by ARHI, we observed up-regulation of p53 protein expression via the PI-3K/AKT pathway in ARHI transfectants, as compared with vector transfectants or untreated controls (Fig. 5). Since p53 could induce G1 cell cycle arrest through transcriptional activation of p21WAF1 (12), we examined the effect of ARHI on the expression of p21WAF1. As expected, p21WAF1 expression was clearly up-regulated in ARHI transfectants. To better understand the role of the PI-3K/AKT pathway in ARHI-reactivation, we treated cells with PI-3K inhibitor LY294002. This specific inhibitor was able to block AKT activation, increasing p21WAF1 expression via up-regulation of p53. ARHI expression displayed no change (Fig. 5). These results suggest that the reexpression of ARHI increases p21WAF1, induces cell cycle G1 arrest by up-regulation of p53 and blocks the PI-3K/AKT pathway.

ARHI reexpression increased the expression of p27kip1. Many studies show that blocking the PI-3K/AKT signaling pathway modulates G1 cell cycle progression and one critical target of this signaling process is the cyclin-dependent kinase (CDK) inhibitor (CDKI) p27kip1 (13). Thus, we investigated whether ARHI up-regulates expression of p27kip1 through the inhibition of PI-3K/AKT activation. As shown in Fig. 6, p27kip1 expression was increased in ARHI transfectants compared with vector transfectants and parental control cells. Additionally, PI-3K inhibitor LY294002 resulted in the
These results indicated that ARHI reactivation increases p27kip1. The cell cycle is regulated through the regulatory proteins that mediate growth arrest (24). Among the transcriptional targets of p53, the CDK inhibitor p21WAF1 plays a key role in mediating G1 arrest (25). In this study, as expected, the findings showed that the levels of p53 and p21WAF1 are increased due to ARHI reexpression (Fig. 5). ARHI significantly reduced p-AKT protein expression and the PI-3K inhibitor LY294002 increased p53 and p21WAF1 expression in ARHI transfectants, suggesting that ARHI is effective in promoting p53 and p21WAF1 accumulation by inactivating PI-3K/AKT signaling in pancreatic cancer cells.

To provide additional evidence for AKT as a crucial target of ARHI, we investigated the effects of ARHI on another AKT target, p53. AKT is known to promote cell survival through activation of the p53-binding protein MDM2, resulting in enhanced p53 degradation and negative regulation of the transcriptional functions of p53 (23). As reported previously, the tumor suppressor gene p53 controls the G1 and G2/M cell cycle checkpoints that mediate growth arrest (24). Among the transcriptional targets of p53, the CDK inhibitor p21WAF1 plays a key role in mediating G1 arrest (25). In this study, as expected, the findings showed that the levels of p53 and p21WAF1 are increased due to ARHI reexpression (Fig. 5). ARHI significantly reduced p-AKT protein expression and the PI-3K inhibitor LY294002 increased p53 and p21WAF1 expression in ARHI transfectants, suggesting that ARHI is effective in promoting p53 and p21WAF1 accumulation by inactivating PI-3K/AKT signaling in pancreatic cancer cells.

Based on previous findings in our lab, we further examined cell cycle distribution using flow cytometry analysis in ARHI- or vector transfectants. As shown in Fig. 3, we demonstrated that ARHI reexpression resulted in G1 cell cycle arrest. Our data also showed elevated p27kip1 expression due to ARHI reexpression through the suppression of the PI-3K/AKT signaling pathway (Fig. 6). It is well known that G1-to-S cell cycle progression is controlled by several CDK complexes such as cyclin A-CDK2, cyclin E/CDK2 and cyclin D1-CDK4 (26); the activities of CDK complexes are dependent on the balance of cyclins and CKIs such as p27kip1 and p21WAF1 (27). To determine whether ARHI-induced G1 cell cycle arrest is due to the down-regulation of cyclins and CDKs, we analyzed the expression of these cell cycle regulators. The experiments indicated that ARHI reexpression downregulated cyclin A-CDK2 and cyclin D1-CDK4, but not cyclin E-CDK2 (Fig. 7).

In conclusion, we show that expression of ARHI blocks PI-3K/AKT survival signaling in pancreatic cancer cells. ARHI reexpression upregulates p53, p21WAF1 and p27kip1 through PI-3K/AKT inactivation. Therefore, ARHI inhibits proliferation of pancreatic cancer cells by modulating the expression of cell cycle regulation factors. ARHI plays an important role in the development of pancreatic cancer.
Acknowledgements

This study was supported by the National Natural Science Foundation of China (30670963).

References