CAG repeats in the androgen receptor gene are shorter in patients with pulmonary, esophageal or bladder carcinoma and longer in women with uterine leiomyoma

XIAO-YING TENG1, GUI-QIU LIU2, XIAO-LI DIAO2, ZONG-YONG WU3, LAN LI1, WEI ZHANG2, XUN ZHANG1 and QIN SU1,2

1Department of Pathology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021; 2Department of Pathology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi 710038; 3Clinical Laboratory, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China

Received October 9, 2009; Accepted November 9, 2009

DOI: 10.3892/or_00000702

Abstract. Preferential occurrence of pulmonary, esophageal and bladder carcinomas in males indicate a possible involvement of androgen receptor (AR)-mediated functions. We evaluated the roles of the CAG repeat polymorphism in AR exon 1 in development of these lesions. The exon 1 of AR gene was amplified in samples from 198 male patients with lung carcinoma, 183 with esophageal carcinoma, 95 with bladder carcinoma and 94 males with appendicitis, as a reference group. Mean numbers of the CAG repeat in these 3 cancer groups were determined to be 20.2, 20.0 and 20.0, respectively, all being significantly smaller than that of the reference group (21.1; P<0.05). Samples from 118 female patients with lung carcinoma and 154 females with appendicitis, as a reference group, were examined, with the mean CAG repeat number significantly smaller (19.8) than that of the female reference group (20.7; P<0.01). Samples from 108 patients with uterine leiomyoma were also examined, and their CAG repeat numbers were found to be markedly expanded (23.4; P<0.01). The patients with multiple leiomyomas tend to carry a longer CAG repeat structure, with the mean CAG repeat number longer in the multicentric multiple cases (24.1) compared to that of the unicentric, multinodular cases (22.2) and those with solitary lesions (23.1; P<0.01). These results indicate that a shorter CAG repeat structure may predispose individuals to a higher risk to some male-predominant neoplasms including pulmonary, esophageal and bladder carcinomas and a longer one confers women greater susceptibility to leiomyoma development in the uterus.

Introduction

Carcinomas of the lung, esophagus and urinary bladder are among the most common malignancies in man worldwide. While their pathogenic mechanisms are not fully understood, it is noteworthy that all of them occur more frequently in males, with their male/female ratios estimated to be 2.7, 3.5 and 5.0, respectively (1-3). The preferential occurrence of these diseases in males strongly indicates involvement of some androgenic functions in cancer development. Elevation of circulating androgen level has been observed in these patients (4) and androgen receptor (AR) was detected in tissue samples of these carcinomas (5-7). It is largely unknown, whether the male predilection indicates a role of androgen-mediated functions in the development and/or progression of these neoplasms. Androgen play its function through AR. It is reasonable to think that AR is even more important in modulation of the carcinogenesis than its ligands, considering the persistent existence and functional activation of AR molecules in reproductive and some somatic tissues.

AR is a member of the steroid receptor family, encoded by a large gene located at q11-12 on X chromosome (8,9). Within its exon 1, there is a highly polymorphic CAG short-tandem repeat (STR), which encodes for a polyglutamine chain of variable length in the aminoterminal transactivation domain of the protein (10,11). An inverse relationship was demonstrated between the STR and AR activity, with the tracts of shorter size conferring greater activity than those of larger size (10). The CAG STR polymorphism has been found to be involved in several androgen-involved pathogenic processes in both men and women (12). A shorter CAG STR was observed in patients with coronary artery disease (13), prostate cancer (14-16), ovarian cancer (17-19) and hepatitis B virus-related hepatocellular carcinoma (20) and a longer one was noted in female patients with breast cancer (21) and uterine endometrial carcinoma (22). It is conceivable to
consider that the CAG repeat polymorphism is one of the genetic factors predisposing individuals to some diseases including various types of cancer.

During this survey, the CAG repeat numbers in patients with lung, bladder and esophageal carcinomas were measured and their relationships with the diseases were evaluated. Samples from female patients with uterine leiomyoma, whose development was ascribed to persistent stimulation by estrogen (23), were also evaluated as an additional disease group.

Materials and methods

Samples. All samples used were obtained from Cancer Hospital, Chinese Academy of Medical Sciences in Beijing and Tangdu Hospital, The Fourth Military Medical University in Xi’an. The study protocol was approved by the Medical Ethics Commission of the Fourth Military Medical University. The lung carcinoma cases enrolled included 198 male and 118 female patients, with their ages ranging from 29 to 81 years (median, 60 years) and 19 to 75 years (median, 56 years), respectively. All of the specimens were reviewed independently by three pathologists (Q. Su, X.-Y. Teng and X.-L. Diao), with 151 (119 from males and 32 from females) diagnosed as squamous cell carcinoma, 131 (65 from males and 66 from females) as adenocarcinoma, 27 (12 from males and 15 from females) as small cell lung carcinoma (SCLC) and 6 (1 from males 5 from females) as other cancer types. The esophageal carcinoma group included 183 male patients, with their ages ranging from 35 to 78 years (median, 59 years). A total number of 91 bladder urothelial carcinoma specimens from male patients were assessed, with their ages ranging from 17 to 84 years (median, 63 years). Samples from 108 patients with uterine leiomyomas were examined, including 31 cases with single tumor, 43 with 2 or 3 tumors, 24 with >3 tumor nodules and 10 multinodular cases whose tumor numbers were not recorded. Among the 77 multinodular cases, 25 were classified as single tumor, 43 with 2 or 3 tumors, 24 with >3 tumor nodules and 10 multinodular cases whose tumor numbers were not recorded. Among the 77 multinodular cases, 25 were classified as unicentric type and 23 as multicentric type by assays on their X chromosome inactivation patterns (24). In addition, 248 consecutive appendix samples, resected from 94 male and 154 female adults for appendicitis, were examined as references.

DNA isolation and amplification of the AR gene exon 1. Paraffin-embedded tissues were retrieved from the files and sections of 10 μm in thickness were prepared. The sections were deparaffinized in xylene and dehydrated by rinsing in graded ethanol. Genomic DNA was isolated from the samples using an extraction kit (Qiagen, Hilden, Germany). DNA of peripheral leukocytes was also extracted for the cases with pulmonary and esophageal carcinomas.

Exon 1 of AR gene, containing the CAG STR region, was amplified by nested polymerase chain reaction (PCR) as described previously (24). Two pairs of primers (25) were used, including 5'-GAG GAG GAG CTT TCC AGA ATC TG-3' (AR1A), 5'-CAT GGG CTT GGG A-3' (AR1B), 5'-TCC AGA ATC TGT TCC AGA GC-3' (AR2A) and 5'-TGG GGA GAA CCA TCC TCA CC-3' (AR2B). The first-round reaction was in a volume of 50 μl containing DNA template 5 μl, 10 mmol/l deoxynucleotide triphosphate 4 μl, 50 mmol/l MgCl₂ 1.5 μl, 20 pmol/l primers AR1A and AR1B, 1 μl each and 0.25 unit of Taq DNA polymerase (Takara Biotechnology Co., Ltd., Dalian, China). After preheating, 25 cycles were performed under the condition of 97°C for 40 sec, 56°C for 50 sec and 72°C for 1 min, with a final extension at 72°C for 15 min. The amplification products were diluted at 1:10 and subjected to second-round reaction using the primer pair AR2A/AR2B and the same conditions as for the first one.

Size assessment of AR amplification products by denaturing polyacrylamide gel electrophoresis and sequencing. Efficacy of the PCR for the AR gene was assessed by electrophoresis on 2% agarose gels. Amplification products, 3 μl each, were mixed with the same volume of sample buffer (99% formamide, 1 mg/ml bromophenol blue and 1 mg/ml xylene cyanol), and loaded onto a 0.75-mm thick gel (10% polyacrylamide gel containing 8.0 M urea) as long as 26 cm and resolved at a voltage of 150 V for 26 h. Then, the gels were fixed by soaking in 10% acetic acid for 4 min. Sizes of products were determined by their mobility in a solution containing 3% sodium carbonate and 0.1% formaldehyde for 5 min and terminated by soaking gels in 10% acetic acid for 5 min. Sizes of products were determined using 10-bp DNA ladders (Gibco BRL).

Representative PCR products for AR exon 1 were also analyzed by direct sequencing, as described previously (24), in order to correlate their migration behaviors, sizes and numbers of CAG repeat within the gene.

Evaluation of data and statistical analysis. Numbers of the CAG repeats (n) were calculated from the size of the amplification products, in relation to a series of standards obtained by direct sequencing of representative PCR products. Statistical computations were performed using the Statistical Package for Social Science 13.0 for Windows (SPSS, Inc, Chicago, IL, USA). Differences in CAG repeat numbers between two groups were described using the t-test and the analysis of variance (ANOVA) test. P-values <0.05 were regarded as being statistically significant.

Results

Assessment of CAG STR sizes of AR gene. Amplification was successful for all of the samples examined. Single band was demonstrated in gels in all of the samples from males. For the heterozygous samples from females, only shorter alleles were assessed. Sizes of the products were measured by their mobility on denaturing polyacrylamide gels. Accuracy of the assay was confirmed by fully consistent results obtained through electrophoresis and sequencing analyses in 11 representative samples (Table I). The n values were calculated according to sizes of the products (Fig. 1). Results of the assay are listed in Table II, with the n values assessed separately in patients with pulmonary, esophageal and bladder carcinomas, uterine leiomyomas and appendicitis.

Shorter CAG structures observed in males with lung carcinoma. As shown in Fig. 2A and D, n values in male patients with lung cancer ranged from 7 to 31, with their mean
being 20.2±3.5, while those in male references ranged from 14 to 30, with their mean being 21.1±3.4. The

$n$ values of CAG repeat in both the cancer patients (12.6%, 25/198) and reference group (18.1%, 17/94) peaked at 20, but the STR was found to be significantly shorter in the former group than in the latter (P<0.05; Table II). Occurrence of shorter CAG

Table I. Measurement of sizes of AR gene amplification products by denaturing gel electrophoresis and sequencing and determination of the CAG repeat numbers.

<table>
<thead>
<tr>
<th>Codes of samples</th>
<th>Sizes measured by mobility (bp)</th>
<th>Sizes measured by sequencing (bp)</th>
<th>CAG repeat numbers ($n$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>193</td>
<td>193</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>202</td>
<td>202</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>208</td>
<td>208</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>211</td>
<td>211</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>220</td>
<td>220</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>226</td>
<td>226</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>229</td>
<td>229</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>232</td>
<td>232</td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td>235</td>
<td>235</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>247</td>
<td>247</td>
<td>29</td>
</tr>
<tr>
<td>11</td>
<td>250</td>
<td>250</td>
<td>30</td>
</tr>
</tbody>
</table>

Table II. Numbers of CAG repeat structures in the androgen receptor gene in male and female patients with neoplastic and non-neoplastic diseases.

<table>
<thead>
<tr>
<th>Patient groups</th>
<th>Case numbers</th>
<th>Ranges</th>
<th>Mean ± SD</th>
<th>P-values$^a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males with appendicitis</td>
<td>94</td>
<td>14-30</td>
<td>21.1±3.4</td>
<td>0.043</td>
</tr>
<tr>
<td>lung cancer</td>
<td>198</td>
<td>7-31</td>
<td>20.2±3.5</td>
<td>0.043</td>
</tr>
<tr>
<td>esophageal cancer</td>
<td>183</td>
<td>6-32</td>
<td>20.0±5.0</td>
<td>0.013</td>
</tr>
<tr>
<td>bladder cancer</td>
<td>91</td>
<td>9-27</td>
<td>19.8±3.3</td>
<td>0.001</td>
</tr>
<tr>
<td>Females with appendicitis</td>
<td>154</td>
<td>14-27</td>
<td>20.7±2.9</td>
<td>0.006</td>
</tr>
<tr>
<td>lung cancer</td>
<td>118</td>
<td>9-24</td>
<td>19.8±2.5</td>
<td>0.001</td>
</tr>
<tr>
<td>uterine leiomyoma</td>
<td>108</td>
<td>17-31</td>
<td>23.4±2.5</td>
<td>0.001</td>
</tr>
</tbody>
</table>

$^a$As compared with the reference group admitted for appendicitis and without a detectable tumor.

Figure 1. Representative data of measuring CAG STR length of the AR gene by denaturing gel electrophoresis. The products, amplified from 11 samples from male patients with urothelial carcinoma in the bladder, were loaded onto a polyacrylamide gel containing 8 M urea (lanes 1-11) and resolved for 26 h. Their sizes were assessed by correlating their mobility to that of 10-bp DNA markers (•, on the lane M). Locations of the markers were denoted by short bars, and their sizes, from 180 to 240 base pairs (bp), are on the left side. Numbers of the CAG repeat ($n$), calculated by sizes of these products (•), are on the right side.

being 20.2±3.5, while those in male references ranged from 14 to 30, with their mean being 21.1±3.4. The $n$ values of CAG repeat in both the cancer patients (12.6%, 25/198) and reference group (18.1%, 17/94) peaked at 20, but the STR was found to be significantly shorter in the former group than in the latter (P<0.05; Table II). Occurrence of shorter CAG

STR ($n$<22) was observed in 64.1% (127/198) of the male carcinoma patients, being more frequent than in the reference group (59.6%, 56/94; P<0.05).

While the patients with lung carcinoma were shown to have a shorter CAG STR, it is conceivable to consider that cancer may develop earlier in these patients. The mean
repeat numbers of the cancer patients aging <55 years and ≥55 years at diagnosis were determined to be 20.0±3.3 and 20.3±3.7, respectively. The difference did not attain statistic significance (P>0.05).

Shorter CAG repeat structures observed in females with lung carcinoma. As shown in Fig. 3A and C, n values of the CAG repeat in the female patients ranged from 9 to 27, with the mean of 19.8±2.5 and the most frequent number located at 20. The CAG STR was also shorter in female cancer patients than those without a carcinoma (P<0.01; Table II). Occurrence of shorter CAG STR (n<22) was observed in 78% (92/118) of the cancer patients, being more frequent than that of the reference individuals without a detectable neoplasm (64%, 98/154; P<0.05). The mean repeat number of the cancer patients aged <55 years was 20.9±4.0 and that of patients ≥55 years was 19.5±2.8. The difference did not attain statistical significance (P>0.05).

Shorter CAG repeat structures observed in males with esophageal carcinoma. Distribution patterns of the n values of the 183 male patients with esophageal carcinoma and the corresponding reference groups are shown in Fig. 2B and D. The values of the cancer patients ranged from 6 to 32, with a mean of 20.0±5.0. The STR was significantly shorter in the carcinoma patients than in corresponding reference group (21.1±3.4, P<0.05; Table II). However, shorter CAG repeats (n<22) were detected at a similar frequency (59.0%, 108/183) as in the corresponding reference individuals (59.6%, 56/94; P>0.05). The mean repeat number of the cancer patients aged <55 years at diagnosis was 20.6±4.6, whereas that of patients ≥55 years was 19.8±5.3. The difference was not of statistical significance (P>0.05).

Shorter CAG repeat structures observed in males with bladder carcinoma. A total number of 91 male patients with urothelial carcinoma patients were examined. The n values ranged from 9 to 27, with the most frequent numbers located at 20 (Fig. 2C). Their mean was 19.8±3.3, being significantly shorter than that of the male reference group without a detectable neoplasm (21.1±3.4, P<0.05; Table II). Percentage of the cancer patients with shorter CAG repeats (n<22) was shown to be higher (67.0%, 61/91) than that of the reference group (59.6%, 56/94; P<0.05). The n values in different age groups were also determined. Mean number of the cancer patients aged <55 years was 20.9±4.0 and that of the patients aged...
Ligand-binding domain (27,28). The transactivation domain is nuclear-localizing short hinge region and a COOH-terminal transactivation domain, a central DNA-binding domain, a longer CAG repeat structure observed in patients with AR (18/31), 58.1% (25/43) and 71.6% (14/24) in these 3 groups, respectively. The cases with multicentric type of tumors were found to have an increased risk to a few neoplasms including prostate (12,14,15,38) and hepatocellular carcinomas (20), while a longer CAG STR was associated to cancer development in the breast (39-42) and endometrium (43,44).

It seems to be reasonable that relatively reduced sizes of the CAG repeat structure may confer individuals increased susceptibility to some male or male-predominant disorders and expansion of its size may result in greater predisposition to some female or female-predominant diseases including mammary and genital tract tumors.

A marked male predilection is found in pulmonary, esophageal and bladder carcinomas (1-3). While pathogenesis of these cancers is not fully understood, cigarette smoking is believed to be one of the causative factors for all of them (45-48). Data of haplotype analysis from South Africa indicated increased susceptibility to esophageal cancer in individuals with a (CAG) ≤21/(GGC) ≤16 pattern, but they failed to show an association between CAG repeat numbers and cancer development (49). In the present study, we assessed the CAG STR length in 183 male patients with esophageal carcinoma, revealed a significantly smaller n value in cancer patients (mean, 20.0) compared to that of male reference group (mean, 21.1). A possible link was described in a recent survey between the CAG and GGN repeat length polymorphism of AR exon 1 and urothelial carcinoma in bladder (50), but the results were contradictory. In our study, the CAG STR length was assessed in 95 patients with bladder carcinoma, with their mean determined to be 19.8, being 1.3 smaller than that of the reference group. Our results demonstrate that a shorter CAG STR confers individuals a greater risk to esophageal and bladder carcinomas. In addition, we also measured the CAG ATR length in male and female patients with pulmonary carcinoma, with their n values determined to be ~1 nucleotide triplet smaller than those of the male and female reference groups. Our study, for the first time, provided evidence for the involvement of the CAG repeat polymorphism in lung cancer development in

The relationship between tumor numbers and the CAG STR length was also assessed in 98 patients with uterine leiomyomas. Mean of the n values was determined to be 23.1±2.2 (19-29), 23.3±2.8 (18-31) and 23.8±2.2 (17-28), respectively, in cases with single, >2 or >3 tumor nodules. Frequencies of longer CAG repeats (n>22) were 58.1% (18/31), 58.1% (25/43) and 71.6% (14/24) in these 3 groups, respectively. The patients with >3 tumor nodules tend to have a longer CAG STR at the AR gene than the former two groups, but the differences did not attain statistical significance (P>0.05).

The unicentric and multicentric types of multinodular uterine leiomyomas were proposed recently to develop in different mechanisms (24) and n values of these patients were also assessed in this study (Fig. 4). Mean of the n values was 22.1±2.5 (17-27) in the unicentric cases and 24.1±2.1 (21-28) in the multicentric cases, and their frequencies with longer CAG repeats (n>22) estimated to be 40% (10/25) and 65.7% (16/24), respectively. The cases with multicentric type of multiple uterine leiomyomas were shown to have a longer CAG repeat than those with unicentric, multinodular lesions (P=0.007), the difference between the unicentric type of multiple leiomyomas and the solitary tumor did not attain statistical significance (P>0.05).

**Discussion**

AR gene is composed of 75,000 to 90,000 nucleotides, including 8 exons (26). The encoded protein contains 910 to 919 amino acid residues, consisting of a NH2-terminal transactivation domain, a central DNA-binding domain, a nuclear-localizing short hinge region and a COOH-terminal ligand-binding domain (27,28). The transactivation domain is encoded by exon 1. In this region, several polymorphic structures have been demonstrated to be responsible for variation of the transcription-activating activity of AR, among which the polyglutamine tract encoded by the CAG STR is believed to be most important (12,29). Functional studies demonstrated an inverse relationship between size of the polyglutamine structure and transactivation capacity of AR (30-32), that the CAG STR polymorphism may exert influences on some physiological and pathological processes by modulating AR activity.

Recent surveys have associated variations of the CAG repeat numbers to several clinical phenotypes including some reproductive, metabolic disorders (33,34) and cancer formation in several sites (12,29,34). Expansion of its size, but still within the normal range (n<37), was linked to reduced androgenic function (35,36). Markedly increased n values of the CAG repeat (40 to 52) have been causally linked to spinal-bulbar muscular atrophy, a neurodegenerative disorder that only affects males (37). On contrary, reduced n values have been associated with clinical features similar to that observed with increased androgenic function (29). In addition, the CAG repeat length polymorphism was associated to development of several malignancies. Males carrying a shorter CAG STR were found to have an increased risk to a few neoplasms including prostate (12,14,15,38) and hepatocellular carcinomas (20), while a longer CAG STR was associated to cancer development in the breast (39-42) and endometrium (43,44).

Some cancers is not fully understood, cigarette smoking is believed to be one of the causative factors for all of them (45-48). Data of haplotype analysis from South Africa indicated increased susceptibility to esophageal cancer in individuals with a (CAG) ≤21/(GGC) ≤16 pattern, but they failed to show an association between CAG repeat numbers and cancer development (49). In the present study, we assessed the CAG STR length in 183 male patients with esophageal carcinoma, revealed a significantly smaller n value in cancer patients (mean, 20.0) compared to that of male reference group (mean, 21.1). A possible link was described in a recent survey between the CAG and GGN repeat length polymorphism of AR exon 1 and urothelial carcinoma in bladder (50), but the results were contradictory. In our study, the CAG STR length was assessed in 95 patients with bladder carcinoma, with their mean determined to be 19.8, being 1.3 smaller than that of the reference group. Our results demonstrate that a shorter CAG STR confers individuals a greater risk to esophageal and bladder carcinomas. In addition, we also measured the CAG ATR length in male and female patients with pulmonary carcinoma, with their n values determined to be ~1 nucleotide triplet smaller than those of the male and female reference groups. Our study, for the first time, provided evidence for the involvement of the CAG repeat polymorphism in lung cancer development in
both men and women. These results may partly explain the marked male predilection of these three malignancies.

Uterine leiomyoma is one of the most common female genital tract tumors. The lifetime risk for a woman to the tumor may exceed 60% (51). Although its pathogenesis has not been elucidated, it is well known that its growth is dependent on ovarian hormones, particularly estriol (52). Tumor regression occurs in most of the cases after menopause, and tumor growth was enhanced in these patients receiving hormone replace therapy with estrogen analogues (53,54). Administration of oral contraceptives containing progesterin may counterbalance the effect of estrogens and result in growth inhibition of the tumor (55). However, a growth-promoting effect was also observed in leiomyoma cells treated with progesterin (56). The difference in the actions of progestronics on uterine leiomyoma may be explained by the ration of progesterone receptor (PR) A and B (57). High-level expression of estrogen receptor (ER) and PR is demonstrated in the leiomyoma tissue and myometrium of the uterus (55,58-60), confirming the view that dysfunction of ER- and PR-mediated signal pathways is involved in development and progression of the tumor. AR expression was also demonstrated in uterine leiomyoma (58-60), indicating that AR-mediated functions may also play a role in uterine leiomyogenic tumorigenesis.

Family clustering was noted in some patients with uterine leiomyoma (61-63), indicating presence of some inheritable factors in development of the neoplasm. The familial and non-familial cases were shown to differ in some clinical phenotypes, with multiple leiomyomas found preferentially in the former group and solitary lesions in the latter (62-64). Polymorphisms of ER (65,66) and PR genes (67,68) have been linked to susceptibility to uterine leiomyoma. Two research groups also assessed n values of the CAG repeat structure in these patients, but they failed to associate the polymorphism to the tumor development (69,70). The current study revealed longer CAG repeat structures in patients with uterine leiomyomas, demonstrating an inverse relationship between the CAG STR length and susceptibility to uterine leiomyomas. These results, combined with the previous observations on ER and PR polymorphism (65-68), may provide a possible explanation for the family clustering of the tumor. A longer CAG STR in AR exon I may predispose females a greater risk to uterine leiomyomas, particularly to occurrence of multiple leiomyomas.

Our previous study provided an approach to divide multiple leiomyomas of the uterus, based on their clonal origins, into multicentric and unincentric lesions (24). In the former type, multiple lesions were proven to develop independently. In the latter type, multiple tumor nodules were revealed to develop from a parent tumor by neoplastic cell spreading. In the present study, a difference was demonstrated in the CAG repeat numbers between these two types of cases. The CAG STR in patients with multicentric lesions was found to be longer, by a factor of 1.9 in the n value, compared to those with unincentric lesions. These results provide further evidence for the presence of different types of multinodular uterine leiomyomas, which may be associated with some inheritable traits including distinct genotypes of these hormonal receptors and may show different biological behavior.

Acknowledgements

The authors thank Professors Qinjing Pan, Jun Qi and Zhihua Liu for helpful discussions, Drs Lin Yang and Wenting Huang for statistic assistance, Guolian Wei, Xinhua Xue, Lei Guo, Fang Ding and Yongqiang Xie for their technical assistance. The project was supported by the National Natural Science Foundation of China, Grants 30171052, 30572125 and 30772508 and the CAMS Cancer Hospital Clinical Research Project LC2007A21.

References


