Triptolide induces apoptosis in human adrenal cancer NCI-H295 cells through a mitochondrial-dependent pathway

PING-PING WU1, KUO-CHING LIU2, WEN-WEN HUANG3, CHIA-YU MA5, HUNG LIN4, JAI-SING YANG1* and JING-GUNG CHUNG3,6*

1School of Pharmacy, Departments of 2Medical Laboratory Science and Biotechnology, 3Biological Science and Technology and 4Pharmacology, China Medical University, Taichung 404; 5Department of Food and Beverage Management, Technology and Science Institute of Northern Taiwan, Peitou, Taipei 112; 6Department of Biotechnology, Asia University, Taichung 413, Taiwan, R.O.C.

Received August 26, 2010; Accepted October 25, 2010
DOI: 10.3892/or.2010.1080

Abstract. Triptolide, the main active component obtained from Tripterygium wilfordii Hook. f, has been reported to present potent immunosuppressive and anti-inflammatory biological activities. It has been previously shown that due to the cytotoxicity of triptolide it has a limited use in the clinic. Although numerous studies have shown that triptolide induced apoptosis in many human cancer cells there is no report to show triptolide-induced apoptosis in human adrenal cancer cells. We treated the human adrenal cancer NCI-H295 cells with triptolide in vitro and investigated its cytotoxic effects. The cytotoxicity was examined and quantitated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay and the viability of inhibition and apoptosis was determined by flow cytometric assay, using propidium iodide (PI) staining for apoptosis. Flow cytometric assay also used for the determination of reactive oxygen species (ROS) production and the levels of mitochondrial membrane potential (ΔΨm), and the caspase-3 and -9 activation in NCI-H295 cells. Western blotting was used for examining the changes of apoptotic associated proteins. The results indicated that triptolide induced cytotoxicity (decreased the percentage of viable cells) and induced sub-G1 phase (apoptosis) occurring in NCI-H295 cells and those effects are dose-dependent. Results also showed that triptolide promoted the production of ROS and decreased the levels of ΔΨm in examined NCI-H295 cells. The results showed that triptolide promoted the levels of cytochrome c, Apaf-1, AIF, Endo G, caspase-9 and -3 which were analyzed by Western blotting. These results suggest that triptolide is able to induce apoptosis on NCI-H295 cells through the mitochondrial-dependent signal pathway.

Introduction

Triptolide, is a diterpenoid triepoxide, which is isolated from the plant Tripterygium wilfordii Hook. f (a member of the Celastraceae family) (1) that has been use in Chinese traditional medicine for two centuries. In patients, triptolide has been reported to treat a variety of autoimmune diseases, including rheumatoid arthritis; nephritis; and systemic lupus erythematosus and as immunosuppressant (2-5).

Besides the anti-inflammatory and immunosuppressive activities, triptolide has been shown to have antitumor properties in a variety of human tumor cells via impairing cell growth and inducing apoptosis (1,6-8). However, a subacute toxicological study from mice demonstrated that the kidney is one of the target organs for triptolide (9). However, the effect of triptolide on human adrenal cancer NCI-H295 cells has not yet been investigated. Thus, we tried to identify the mechanism of triptolide-induced apoptosis in human adrenal cancer cells in vitro.

The present study was focused to define, for the first time, the anticancer effects of triptolide in treating human adrenal cancer NCI-H295 cells. We investigated whether triptolide was able to mediate the inhibition of cell growth and induction of apoptosis in human adrenal cancer NCI-H295 cells. Furthermore, to identify a potential signal pathway for the anticancer effect in triptolide treated adrenal cancer cells.

Our results demonstrated that triptolide induced NCI-H295 cells death in apoptotic manner through a mitochondrial-dependent pathway. Furthermore, caspase-3 and -9 activations are also observed during the course of apoptosis in NCI-H295 cells.

Key words: triptolide, Chinese herbal medicine, apoptosis, human adrenal cancer NCI-H295 cells, mitochondrial-dependent pathway
Materials and methods

Materials and chemicals. Triptolide, potassium phosphate, dimethyl sulfoxide (DMSO), propidium iodide, triton X-100, Tris-HCl, trypan blue, ribonuclelease-A were purchased from Sigma Chemical Co. (St. Louis, MO, USA). RPMI-1640 medium, L-glutamine, fetal bovine serum, penicillin-streptomycin, and trypsin-EDTA were obtained from Invitrogen Corp. (Carlsbad, CA, USA). The primary antibodies were obtained as follows: antibodies for caspase-9 and caspase-3 were purchased from Cell Signaling Technology (Beverly, MA); antibodies for cytochrome c, Apaf-1, β-actin, AIF, Endo G and horseradish peroxidase (HRP)-linked goat anti-mouse IgG, goat anti-rabbit IgG, were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Caspase-9 inhibitor (Z-LEHD-FMK) and caspase-3 inhibitor (Z-DEVD-FMK) were obtained from R&D Systems (Minneapolis, MN, USA) then were dissolved in DMSO and diluted in cell culture medium before use.

Cell culture. The human adrenal cancer NCI-H295 cells were obtained from the Food Industry Research and Development Institute (Hsinchu, Taiwan). Cells were cultured in 75 cm² tissue culture flasks at 37°C under a humidified 5% CO₂ atmosphere, with 90% RPMI-1640 medium with 2 mM L-glutamine adjusted to contain 10% fetal bovine serum (Grand Island, NY), and 1% penicillin-streptomycin (100 U/ml penicillin and 100 μg/ml streptomycin).

Examination of morphological changes and determination of cell viability and sub-G1 phase of cell cycle. Approximately 2x10⁵ cells/well of NCI-H295 cells were grown in 12-well plates for 24 h before they were treated with triptolide at 0, 50, 100, 150 and 200 μM and cells were incubated at 37°C, 5% CO₂ and 95% air for 48 h. For morphological changes, cells were examined and photographed under phase-contrast phase contrast microscope (Fig. 1A). After treatment with 50, 100, 150 and 200 μM of triptolide for 0, 6, 12, 18 and 24 h. All cell samples were harvested then re-suspended in 500 μl of DCFH-DA (10 μM) for ROS (H₂O₂) determination, suspended in 500 μl of DiOC6 (1 μmol/l) for ΔΨₘ determination and then incubated at 37°C for 30 min and analyzed by flow cytometry (16,17). All fluorescence intensities were obtained from the mean intensity of the histogram constructed from 10,000 cells.

Western blotting of apoptosis associated proteins. NCI-H295 cells at a density of 1x10⁶ cells/well were treated with 125 μM of triptolide for 0, 6, 12 and 24 h. Cells from each treatment were collected by centrifugation and the total proteins were quantitated (16,17). Equal amounts of lysate protein were run on 12% SDS-PAGE and electrophoretically transferred to PVDF membrane (Amersham Pharmacia Biotech, USA) then the blocked blots were incubated with specific primary antibody against cytochrome c, Apaf-1, AIF, Endo G, caspase-9 and caspase-3 overnight and further incubated for 1 h with HRP conjugated secondary antibody (Santa Cruz Biotechnology). Bound antibodies were detected by ECL kit as described previously (18-21).

Statistical analysis. Student’s t-test was used to analyze differences between treated and control groups; p<0.05, p<0.01, p<0.001.

Results

Triptolide induces morphological changes and decreases the percentage of viable human adrenal cancer NCI-H295 cells. To investigate the morphological changes and inhibition of cell viability of NCI-H295 cells after exposure to triptolide, the cells were assessed for their potential cytotoxicity on human adrenal cancer cells in vitro. Control cells appeared in the well spreading in spindle shape after observed with the phase contrast microscope (Fig. 1A). After treatment with 50, 100, 150 and 200 μM of triptolide for 24 h, the cell shape changed to round (Fig. 1A), the round-shaped cells suggest that they were undergoing apoptosis initiated by triptolide. The results in Fig. 1 indicate that triptolide induced a significant increase in cell viability inhibition.
Triptolide induces apoptosis (sub-G1) and caspase inhibitors affect the viability of NCI-H295 cells in vitro. It is well documented that cells undergoing early apoptosis can be seen in the sub-G1 phase of the cell cycle. NCI-H295 cells after exposure to various doses of triptolide were harvested and analyzed by flow cytometry and results are shown in Fig. 2A, indicating that triptolide induced apoptosis on NCI-H295 cells in a dose-dependent manner. NCI-H295 cells were pretreated with pan-caspase inhibitors then with 125 μM of triptolide and analyzed for the percentage of viable cells. The results
are shown in Fig. 2B, indicating that triptolide decreased the viable cells, however, the cells pretreated with pan-caspase inhibitors then exposed to triptolide showed an increase in the percentage of viable cells compared to triptolide treatment only.

Figure 3. Caspase-9 and -3 inhibitors inhibited triptolide-induced caspase-9 and -3 activities in NCI-H295 cells. NCI-H295 cells (5x10^5 cells/well) were pretreated with caspase-3 inhibitor (Z-DEVD-FMK), caspase-9 inhibitor (Z-LEHD-FMK) and pan-caspase inhibitor (Z-VAD-FMK) before cells were treated with 125 μM of triptolide then incubated at 37°C, 5% CO₂ and 95% air for 48 h. Cells were harvested by centrifugation and the cell pellets were added to 50 μl of 10 μM caspase-3 and -9 substrate solution. The samples were incubated at 37°C for 60 min before flow cytometric analysis. Caspase-3 and -9 activities were detectable in the FL-1 channel (a BD instrument with emission at 525 nm). **P<0.001 indicates a significant difference from the control.

Figure 4. Triptolide affects the production of ROS and the levels of ΔΨₘ in NCI-H295 cells. NCI-H295 cells (2x10^5 cells/ml) were treated with 125 μM of triptolide for 0, 6, 12, 18 and 24 h. The cells were harvested and resuspended in 500 μl of 2,7-Dichlorodihydrofluorescein diacetate (DCFH-DA) (10 μM) for ROS and in 500 μl of DiOC₆ (1 μmol/l) for ΔΨₘ. Cells was incubated at 37°C for 30 min then analyzed by flow cytometry. **P<0.001 indicates a significant difference from the control.

Triptolide affects the production of ROS and the levels of ΔΨₘ in NCI-H295 cells. It is well documented that ROS and mitochondria play an important role in agent-induced apoptosis; therefore, we investigated whether triptolide promoted ROS production and increased the levels of ΔΨₘ in NCI-H295 cells. NCI-H295 cells were treated with 125 μM triptolide for 48 h then analyzed by flow cytometric assay and the results are shown in Fig. 4A and B. Triptolide activated caspase-9 and -3 in a dose-dependent manner. However, the cells pretreated with inhibitors of caspase-9 and -3 and exposed to triptolide showed a decrease in the activation of caspase-9 and -3.

Triptolide affects the levels of apoptosis-associated proteins in NCI-H295 cells. In order to investigate and confirm the
molecular signaling pathways of triptolide induced apoptosis in NCI-H295 cells, the cells were treated with triptolide and total proteins were collected. Western blotting was used for examining the changes of apoptosis associated proteins and results are shown Fig. 5A and B. The results indicated that triptolide promoted the levels of cytochrome c, Apaf-1, AIF and Endo G (A), caspase-9 and caspase-3 were used (B) then each sample was stained by secondary antibody as described in Materials and methods.

Figure 6. The proposed signaling pathways of triptolide-induced apoptosis in human adrenal cancer NCI-H295 cells are presented.

Discussion

Numerous studies have shown that triptolide has anti-inflammatory effects (22,23), contraceptive activity (24,25), and anti-neoplastic abilities (26,27). However, due to its severe toxic effects the clinical use of triptolide is limited. Recently, several investigators demonstrated that triptolide promote apoptosis in a variety of cell types (28-33) including normal human proximal tubular epithelial HK-2 cells in vitro (34). In this study, we report that triptolide induced apoptosis in human adrenal cancer NCI-H295 cells. Triptolide induced significant viability inhibition and morphological changes of cells and induced apoptosis in triptolide-treated NCI-H295 cells. Moreover, triptolide promoted ROS production and dysfunction of mitochondria. Finally, we found triptolide was able to activate caspase-9 and -3, thus providing a reasonable explanation for its induction of apoptosis in NCI-H295 cells. These results suggest that triptolide could be usefully investigated as a possible therapeutic agent for adrenal cancer cells.
Whether the cytotoxicity (decreased the percentage of viable cells) caused by triptolide on NCI-H295 cells is due to apoptosis or necrosis could not be based on the number of viable cells. To clarify this point, we also used Western blotting for examining the changes of apoptotic associated proteins and caspase-9 and -3 activities in triptolide-treated NCI-H295 cells.

Apoptosis is a tightly regulated autonomously programmed cell death which is involved and utilized extensively during the development and maintenance of tissue and organ homeostasis (35) and elimination of damaged cells. Numerous evidence indicates that many anticancer drugs can cause the death of tumor cells through induction of apoptosis. It is well-known that apoptosis can be divided into two pathways such as the death receptor-mediated extrinsic pathway and the mitochondria-mediated intrinsic pathway (36,37). Our results showed that triptolide induced apoptosis through mitochondria-mediated intrinsic pathway based on several observations such as i) decreased levels of ATP; ii) cytochrome c, AIF and Endo G release from mitochondria and iii) activation of caspase-9 and -3 in examined NCI-H295 cells.

It was also reported that mitochondrion plays a critical role in apoptosis induced by some drugs (38). The mitochondrial death pathway is involved in the changes in the permeability of the outer mitochondrial membrane with the collapse of membrane potential (39,40). After the dysfunction of mitochondria cytochrome c was released and in some signals may also cause AIF and Endo G release from mitochondria. Our results from Western blotting also showed that triptolide increased the release of cytochrome c, AIF and Endo G in NCI-H295 cells. It was reported that the cytosolic cytochrome c from mitochondria binds to Apaf-1, leading to the activation of caspase-9, caspase-3 and poly (ADP-ribose) polymerase (41,42). Caspase-3 plays an important role in the apoptotic pathways and is expressed in almost all types of cells as inactive pro-enzyme (43,44). Caspase-3 can be activated by other activated caspases such as caspase-8 and -9, and subsequently cleaves some specific substrate, i.e. PARP (45) and the cleavage of DNA repair enzyme PARP resulted in chromosomal DNA break and finally led to apoptosis (46). Our results also clearly showed that triptolide induced similar results. Therefore, we suggest that triptolide induced apoptosis through the mitochondria-dependent pathway.

In conclusion, we demonstrated that triptolide significantly induces apoptosis in NCI-H295 cells and the possible signal pathways are shown in Fig. 6. This apoptotic response is associated with the loss of mitochondrial membrane potential, cytochrome c, AIF and Endo G release from mitochondria and activation of caspase-9 and -3. Therefore, we believe that triptolide might be a promising molecule in cancer chemoprevention or chemotherapy in adrenal cancer; we believe that triptolide might be a promising molecule in cancer chemoprevention or chemotherapy in adrenal cancer; and further efforts to explore this therapeutic strategy are necessary.

Acknowledgements

This study was supported by grant CMU96-066 from China Medical University, Taichung, Taiwan.

References

