Abstract. Prostate cancer represents an ideal disease for chemopreventive intervention. Genistein, daidzein and equol, the predominant soy isoflavones, have been reported to lower the risk of prostate cancer. Isoflavones exert their chemopreventive properties by affecting apoptosis signalling pathways in cancer cells. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is an endogenous anticancer agent that induces apoptosis selectively in tumour cells. Soluble or expressed in immune cells, TRAIL molecules play an important role in immune surveillance and defense mechanisms against tumour cells. However, various types of cancer cells are resistant to TRAIL-mediated apoptosis. We examined the cytotoxic and apoptotic effects of genistein, daidzein and equol in combination with TRAIL in LNCaP cells. Cytotoxicity was measured by MTT and LDH assays. Apoptosis was analyzed by flow cytometry and fluorescence microscopy using Annexin V-FITC. Mitochondrial membrane potential ($\Delta \Psi_m$) was evaluated by fluorescence microscopy using DePsipher staining. Flow cytometry detected the expression of death receptor TRAIL-R1 (DR4) and TRAIL-R2 (DR5) on cell surfaces. The soy isoflavones sensitized TRAIL-resistant prostate cancer cells to apoptotic death. The isoflavones did not alter death receptor expression, but significantly augmented TRAIL-induced disruption of $\Delta \Psi_m$ in the LNCaP cells. We showed for the first time that the chemopreventive effects of soy foods on prostate cancer are associated with isoflavone-induced support of TRAIL-mediated apoptotic death.

Introduction

Prostate cancer is one of the most commonly diagnosed cancers in men and the second leading cause of cancer-related deaths in the EU and the US (1). Worldwide disparities exist between geographic regions with regard to prostate cancer incidence. Although genetic factors are important in the etiology of prostate cancer, diet has been presumed to play a key role in prostate carcinogenesis (2). East Asian populations who consume large amounts of soybean foods have lower rates of prostate cancer compared to those in Western countries (EU, US, Canada) (3,4). The soybean is a species of legume that contains high quantities of isoflavones, including genistein, daidzein and equol, which exhibit preventive effects against prostate cancer (5). Isoflavone intake has been estimated to be 25-50 mg/day in Asian countries. Elevated levels of isoflavones are found in the serum, urine and prostatic fluid of Asian men who consume soy-rich foods (5-7).

Soy isoflavones possess anticancer and chemopreventive properties (8-10). The characteristic isoflavone structure is a flavone nucleus that is composed of two benzene rings A and B linked to a heterocyclic ring C. The benzene ring B position is the basis for the categorization of the flavonoid class (position 2) and the isoflavonoid class (position 3) (3). Soybeans contain isoflavones in four chemical forms: aglycons, glycosides, acetylglucosides and malonylglucosides. The major aglycons present in soy are daidzein, genistein and equol (Fig. 1). Isoflavones have been reported to lower the risk of developing prostate cancer (4,5,7,11). The use of naturally occurring compounds is becoming increasingly appreciated as an effective strategy in cancer prevention (12-17). Prostate cancer is an ideal disease for chemopreventive intervention due to its long latency, late age of onset, relatively slower rates of growth and progression, high incidence, tumour marker availability, identifiable preneoplastic lesions and risk groups (18,19).

Soy isoflavones exert their chemopreventive effects through multiple molecular mechanisms of action that affect apoptosis signalling pathways in cancer cells (3,19,20). Dietary flavonoids have been found capable of augmenting the apoptotic activity of TRAIL against prostate cancer cells (21-24). The tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), a member of the TNF superfamily, selectively induces apoptosis in cancer cells with no toxicity against normal tissues (25,26). Apoptosis can be triggered by two major mechanisms: the intrinsic pathway that involves mitochondrial dysfunction, and the extrinsic pathway that is associated with the stimulation of death receptors (DRs) located on the cell membrane. The binding of TRAIL to specific death receptors TRAIL-R1 (DR4) and/or TRAIL-R2 (DR5) expressed on the...
cell surface induces the extrinsic apoptotic pathway. The stimulation of DRs initiates programmed cell death by promoting recruitment of the adaptor molecule Fas-associated death domain (FADD), the formation of death inducing signalling complex (DISC) and, the activation of caspase-8 and subsequent effector caspases. Apoptosis can also be mediated by the intrinsic pathway, with the implication of mitochondrial perturbation and the release of cytochrome c. The link between the extrinsic and intrinsic signalling pathways is formed by the BH3-interacting death agonist (Bid) protein, which is activated by caspase-8 (26-29). However, some tumour cells are resistant to TRAIL-induced cytotoxicity (29-31). TRAIL can be expressed on the surface of T lymphocytes, natural killer cells, dendritic cells, neutrophils, monocytes or macrophages and can also be cleaved into a soluble, secreted form. TRAIL plays important roles in immune surveillance and defense mechanisms against tumour cells (32).

Failure to undergo apoptosis has been attributed to the resistance of cancer cells to TRAIL surveillance resulting in tumour development. The expression of the death receptors TRAIL-R1 or TRAIL-R2 and pro-apoptotic or anti-apoptotic proteins in cancer cells are involved in TRAIL resistance (26-31). However, it has been demonstrated that TRAIL-resistant prostate cancer cells can be sensitized by dietary flavonoids. Moreover, enhancement of TRAIL-mediated programmed death in prostate cancer cells by soy isoflavones may support antitumour immune responses. Therefore, we tested the apoptotic and cytotoxic effects of TRAIL in combination with soy isoflavones in prostate cancer cells and investigated the molecular mechanisms by which the compounds overcome TRAIL-resistance in cancer cells. This study demonstrated that augmentation of TRAIL-mediated apoptosis in prostate cancer cells by daidzein, genistein and equol confirms the chemopreventive properties of soy isoflavones.

Materials and methods

Chemicals and reagents. Daidzein, genistein and equol were obtained from Alexis Biochemicals (San Diego, CA, USA). The isoflavones were dissolved in dimethylsulfoxide (DMSO) to obtain working concentrations. Soluble recombinant human TRAIL (rhTRAIL) was purchased from PeproTech Inc. (Rocky Hill, NJ, USA). Human recombinant TRAIL-R1/Fc and TRAIL-R2/Fc chimera proteins were obtained from R&D Systems (Minneapolis, MN, USA).

Cell line and culture. The human hormone-sensitive prostate cancer cell line LNCaP was obtained from the German Collection of Microorganisms and Cell Cultures (DSMZ; Braunschweig, Germany). LNCaP cells were maintained in RPMI-1640 medium with 10% foetal bovine serum, 4 mM L-glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin and were grown in monolayer cultures at 37°C in 5% CO₂ (22,33). Reagents for the cell culture were purchased from PAA, The Cell Culture Co. (Pasching, Austria).

Cytotoxicity assay. Cytotoxicity was measured by 3-(4,5-dimethyl-2-thiazyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay as previously described (34). The MTT assay is based on the cleavage of the tetrazolium salt MTT to the blue formazan dye by viable cells. LNCaP cells (2x10⁵/ml) were seeded for 48 h before the experiments in 96-well plates. TRAIL (50-200 ng/ml) and/or isoflavones (50-100 µM) were added to the cells. After 48 h, 20 µl of MTT solution (5 mg/ml) (Sigma Chemical Co., St. Louis, MO, USA) was added to each well for 4 h. The resulting blue formazan crystals were dissolved in DMSO. Controls included native cells and medium alone. The spectrophotometric absorbance at 550 nm was measured using a microplate reader (ELx 800, Bio-Tek Instruments Inc., Winooski, VT, USA). The percent cytotoxicity was calculated by the formula: Percent cytotoxicity (cell death) = [1 - (Absorbance of experimental wells/Absorbance of control wells)] x 100.

Lactate dehydrogenase release assay. Lactate dehydrogenase (LDH) is a stable cytosolic enzyme that is released upon membrane damage in necrotic cells. LDH activity was measured using a commercial cytototoxicity assay kit (Roche Diagnostics GmbH, Mannheim, Germany). LNCaP cells (2x10⁵/ml) were treated with various concentrations of TRAIL (50-200 ng/ml) and/or isoflavones (50-100 µM) for the indicated periods of time. LDH released in culture supernatants is detected with a coupled enzymatic assay, resulting in the conversion of a tetrazolium salt into a red formazan product. The spectrophotometric absorbance at a wavelength of 490 nm was measured using a microplate reader (35). The maximal release was obtained after treating control cells with 1% Triton X-100 (Sigma Chemical Co.) for 10 min at room temperature. The percentage of necrosis was expressed using the formula: (Sample value/Maximal release) x 100.

Detection of apoptosis by flow cytometry. Apoptosis was determined by flow cytometry using the ApoptoTest-FITC Kit with Annexin V (Dako, Glostrup, Denmark). LNCaP cells (2x10⁵/ml) were seeded in 24-well plates for 48 h and then exposed to TRAIL (50-200 ng/ml) and/or isoflavones (50-100 µM) for 48 h. After this time, the cancer cells were washed twice with PBS (phosphate-buffered saline solution) and resuspended in 1 ml of binding buffer. The cell suspension (500 µl) was then incubated with 5 µl of Annexin V-FITC and 10 µl of propidium iodide (PI) for 10 min at room temperature in the dark. The population of Annexin V-positive cells was evaluated by flow cytometry (BD FACScan; Becton-Dickinson Immunocytometry Systems, San Jose, CA, USA) (22,24).

Detection of apoptosis by fluorescence microscopy. Apoptotic cells were quantified by the fluorescence microscopy method using the Apoptotic and Necrotic and Healthy Cell Quantification Kit from Biotium, Inc. (Hayward, CA, USA). LNCaP cells (2.5x10⁵/ml) were seeded for 24 h before the experiments.
in 24-well plates. TRAIL (100 ng/ml) and/or isoflavones (100 µM) were added to the cancer cells, and 48 h later, the cells were washed with PBS and detached from the cell culture wells by trypsin. Next, the LNCaP cells were centrifuged to discard the supernatant, washed with PBS and resuspended in binding buffer (100 µl/sample). A combination of 5 µl Annexin V-FITC, 5 µl ethidium homodimer III and 5 µl Hoechst 33342 solutions were added to each tube. The samples were incubated at room temperature for 15 min in the dark. After staining, the cancer cells were washed with binding buffer, placed on a glass slide and covered with a glass coverslip. The stained cells were observed under a fluorescence-inverted microscope IX51 (Olympus, Tokyo, Japan) using filter sets for FITC, TRITC and DAPI (36,37). The healthy cells (stained with Hoechst 33342) emitted blue fluorescence, apoptotic cells (stained with Annexin V-FITC and Hoechst 33342) emitted green and blue fluorescence, and necrotic cells (stained with ethidium homodimer III and Hoechst 33342) emitted red and blue fluorescence. The cells were counted, and the apoptotic cells were expressed as a percentage of the total cells.

Evaluation of mitochondrial potential by DePsipher. The DePsipher kit (R&D Systems) was used to measure the mitochondrial membrane potential in the fluorescence microscopy assay according to the manufacturer's instructions (24,38). LNCaP cells (2x10^5/ml) were seeded 24 h before the experiments in 24-well plates. TRAIL (100 ng/ml) and/or isoflavones (100 µM) were added to the cancer cells, and 48 h later, the cells were washed with PBS and detached from the cell culture wells by trypsin. The cells were incubated in the dark with DePsipher (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanin iodide) solution at a concentration of 5 µg/ml for 30 min at 37°C, washed with reaction buffer with stabilizer, placed on a glass slide and covered with a glass coverslip. The stained cells were observed under a fluorescence-inverted microscope IX51 using filter sets for FITC and TRITC. DePsipher exhibits potential-dependent accumulation in mitochondria, indicated by a fluorescence emission shift from red (590 nm) to green (530 nm). In healthy cells, the mitochondria contain red spots following aggregation of the DePsipher within the mitochondria. In cells with a disrupted potential, the dye remains in its monomeric form in the cytoplasm, and uniform green fluorescence appears.

Flow cytometric analysis of death receptor expression on the cell surface of LNCaP cells. The cell surface expression of TRAIL-R1 and TRAIL-R2 receptors in prostate cancer cells was measured by flow cytometry (BD FACScan). LNCaP cells (2x10^5/ml) were seeded in 24-well plates for 24 h and then exposed to isoflavones (100 µM) for 48 h. The cells were then harvested using trypsin and EDTA (ethylenediamine-tetraacetic acid), washed twice in PBS and resuspended in PBS containing 0.5% BSA (bovine serum albumin). Cells were incubated with 10 µl phycoerythrin-conjugated anti-TRAIL-R1 or anti-TRAIL-R2 monoclonal antibodies (R&D Systems) at 4°C for 45 min. After staining, the cancer cells were washed with PBS and analyzed by flow cytometry (38,39). The control consisted of cells in a separate tube treated with phycoerythrin-labelled mouse IgG1 or mouse IgG2b (R&D Systems).

Statistical analysis. The results are expressed as the mean ± SD obtained from three independent experiments performed in quadruplicate (n=12) or duplicate (n=6). Statistical significance was evaluated using the Levene or Bartlett χ^2 test, followed by analysis of variance (ANOVA). The expression of death receptors was assessed using the Student's t-test. P<0.05 was considered significant.

Results

Cytotoxic and apoptotic effects of TRAIL in prostate cancer cells. TRAIL induced cytotoxic and apoptotic effects in LNCaP prostate cancer cells in a dose-dependent manner. The cytotoxicity after a 48-h incubation of TRAIL at concentrations ranging from 50 to 200 ng/ml resulted respectively in cell death from 8.28±1.18 to 19.70±0.93% (Fig. 2A). The percentage of necrotic cell death of LNCaP cells examined by Apoptest-FITC and the LDH assay was approximately zero. TRAIL-induced apoptosis in the LNCaP cells was
Cytotoxic and apoptotic effects of soy isoflavones in prostate cancer cells. The prostate cancer cells were incubated for 48 h with isoflavones at concentrations of 50-100 µM. We demonstrated that treatment of LNCaP cells with these compounds inhibited cell proliferation by inducing cytotoxicity and apoptosis in a dose-dependent manner. The cytotoxic effect of the isoflavones on LNCaP cells resulted in cell death from 5.67±0.73 to 7.92±1.10%, respectively, after treatment with concentrations of the isoflavones of 50-100 µM (Fig. 3A). The percentage of necrotic cell death of the cancer cells examined by Apoptest-FITC and the LDH assay was approximately zero. The Annexin V assay revealed apoptotic cells exposed to isoflavones (Fig. 3B). Incubation of prostate cancer cells with the soy isoflavones induced 6.46±0.48 to 8.13±0.52% apoptosis for daidzein, 8.48±0.53 to 10.32±0.61% apoptosis for genistein and 7.28±0.67 to 9.23±0.58% apoptosis for equol, respectively, of the concentration of the isoflavone. These compounds exhibited low cytotoxic and apoptotic activities against LNCaP cells.

Cytotoxic and apoptotic effects of soy isoflavones in combination with TRAIL. The co-treatment of LNCaP cells with TRAIL at concentrations of 50-100 ng/ml and isoflavones at the concentration of 100 µM increased the percentage of cell death to a range from 38.21±0.72 to 56.18±1.20% for genistein, from 59.14±0.96 to 70.55±0.99% for genistein and from 46.06±1.07 to 60.35±1.04% for equol, respectively. The cytotoxicity measured by MTT assay is shown in Fig. 4A-C. The isoflavones augmented TRAIL-mediated apoptosis in the LNCaP cells. The percentage of apoptotic cells stained with Annexin V-FITC detected by flow cytometry after a 48-h exposure to at a concentration ranging from 50 to 100 ng/ml TRAIL with 100 µM isoflavones was respectively elevated at a range from 41.60±0.50 to 57.55±0.68% for daidzein, from 61.58±0.52 to 71.38±0.76% for genistein and from 46.58±0.63 to 62.05±1.19% for equol (Fig. 4D-F). The percentage of necrotic cell death of the LNCaP cells examined by Annexin V-FITC staining confirmed that the isoflavones enhanced the apoptotic activity of TRAIL against prostate cancer cells (Fig. 4G-I). The soy isoflavones sensitized TRAIL-resistant LNCaP cells to TRAIL-mediated apoptosis.

Effects of soy isoflavones on death receptor expression in prostate cancer cells. The effects of soy isoflavones on the expression of TRAIL-R1 and TRAIL-R2 in LNCaP cells was examined by flow cytometry. The cancer cells were incubated for 48 h with isoflavones, and then assayed using PE-conjugated anti-TRAIL-R1 or anti-TRAIL-R2 antibodies. After treatment with daidzein, genistein or equol the expression of death receptors in the cancer cells did not change. The isoflavones did not increase the expression levels of TRAIL-R1 or TRAIL-R2 in the LNCaP cells (Fig. 5). To confirm these results, we used TRAIL-R1/Fc and TRAIL-R2/Fc chimera proteins, which have a dominant-negative function against TRAIL-R1 or TRAIL-R2, respectively. The chimeric proteins did not efficiently block apoptosis caused by the co-treatment of isoflavones and TRAIL.

Effects of TRAIL and soy isoflavones on mitochondrial membrane potential in prostate cancer cells. The loss of mitochondrial membrane potential (ΔΨm) has been shown to be one of the first intracellular changes following the onset of apoptosis. We examined whether soy isoflavones sensitize prostate cancer cells to TRAIL-induced mitochondrial dys-function. Incubation of LNCaP cells with 100 ng/ml TRAIL or 100 µM isoflavone (daidzein, genistein or equol) individually caused little effect on ΔΨm (7.63±0.75 to 16.63±0.74%). Co-treatment of TRAIL and soy isoflavones resulted in a significantly synergistic enhancement of ΔΨm disruption in a...
Figure 4. Cytotoxic and apoptotic effects of TRAIL in combination with soy isoflavones in LNCaP prostate cancer cells. Cells were incubated for 48 h with TRAIL at concentrations of 50-100 ng/ml and soy isoflavones at the concentration of 100 µM. Cytotoxic activity of TRAIL in combination with (A) daidzein, (B) genistein and (C) equol in LNCaP cells. The percentage of cell death was measured using the MTT cytotoxicity assay. The values represent mean ± SD of three independent experiments performed in quadruplicate (n=12) (**P<0.001 as compared to control). TRAIL-induced apoptosis in combination with (D) daidzein, (E) genistein and (F) equol in LNCaP cells. Apoptotic cell death was detected by flow cytometry using Annexin V-FITC staining. The values represent mean ± SD of three independent experiments performed in duplicate (n=6) (**P<0.001 as compared to control). TRAIL-induced apoptosis in combination with (G) daidzein, (H) genistein and (I) equol in LNCaP cells: (1) control cells, (2) cells incubated with TRAIL (100 ng/ml), (3) cells incubated with isoflavone (100 µM), and 4) cells incubated with both TRAIL (100 ng/ml) and isoflavone (100 µM). Apoptotic cell death was detected and visualized by fluorescence microscopy using Annexin V-FITC staining. Healthy cells (stained with Hoechst 33342) emitted blue fluorescence, and apoptotic cells (stained with Hoechst 33342 and Annexin V- FITC) emitted green and blue fluorescence (arrows).
Discussion

Diets rich in soy products have been associated with reduced incidence and mortality of prostate cancer. Epidemiological evidence, together with preclinical data from animal and in vitro studies, strongly support a correlation between soy isoflavone consumption and protection against prostate cancer (4-10). These effects are mediated through the regulation of cell growth, cell cycle, apoptosis, angiogenesis, invasion and metastatic pathways. Isoflavones have been found to inhibit growth and induce apoptosis in LNCaP, DU145 and PC3 prostate cancer cells (3,20,40). Soy isoflavone-supplemented diets were found to prevent the development of adenocarcinomas in prostate and seminal vesicles in a rat carcinogenesis model (41). In addition a soy diet reduced the growth of transplantable prostate adenocarcinomas and inhibited tumour cell proliferation and angiogenesis of transplantable prostate cancer in immunodeficient mice (42,43).

Dysregulated apoptotic pathways play an important role in the initiation and progression of prostate cancer (18,44,45). Data accumulated from in vitro and in vivo studies suggest that TRAIL plays an important role in the maintenance of immune homeostasis, host tumour surveillance and defense against cancer cells. We demonstrated that the soy isoflavones, daidzein, genistein and equol, markedly augmented TRAIL-induced apoptosis in LNCaP cells. Similarly, other dietary agents may also enhance the apoptotic activity of TRAIL against prostate cancer cells. Epigallocatechin-3-gallate

Figure 5. Effects of soy isoflavones on death receptor expression in LNCaP prostate cancer cells. Cells were incubated for 48 h with (A) daidzein, (B) genistein and (C) equol at a concentration of 100 µM. The surface expression of TRAIL-R1 (DR4) and TRAIL-R2 death receptors on LNCaP cells was measured by flow cytometric analysis. Representative histograms depict the average mean fluorescence from three independent experiments performed in duplicate n=6.

large percentage of cancer cells (53.38±1.41% for daidzein, 66.50±0.93% for genistein and 57.63±0.92% for equol) (Fig. 6). These results indicate the involvement of the mitochondrial (intrinsic) pathway in cancer cells treated simultaneously with TRAIL and isoflavones.
Figure 6. Effects of TRAIL in combination with the soy isoflavones on the mitochondrial membrane potential (ΔΨm) in LNCaP prostate cancer cells. Cells were incubated for 48 h with TRAIL at a concentration of 100 ng/ml and (A) daidzein, (B) genistein, (C) equol at a concentration of 100 µM. The values represent the mean ± SD of three independent experiments performed in duplicate (n=6) (**P<0.001 as compared to control). (D-F), TRAIL in combination with isoflavones, (D) daidzein, (E) genistein and (F) equol, induced loss of ΔΨm in LNCaP cells. Disruption of ΔΨm in cancer cells was assessed by fluorescence microscopic analysis of DePsipher staining: (1) control cells, (2) cells incubated with TRAIL (100 ng/ml), (3) cells incubated with isoflavone (100 µM), and (4) cells incubated with both TRAIL (100 ng/ml) and isoflavone (100 µM). Red fluorescence is emitted from the red aggregates of the DePsipher, which are formed within the mitochondria in healthy cells. Green fluorescence reveals the monomeric form of the DePsipher molecule, which appears in the cytosol after mitochondrial membrane depolarization (arrows).
tests have demonstrated the upregulated TRAIL-R1 and TRAIL-R2 poland. This project was supported by the research grant KNW-1-

Our results revealed that combined treatment of LNCaP cells with TRAIL and soy isoﬂavones induced mitochondrial-dependent apoptosis, while soy isoﬂavones did not alter death receptor expression in LNCaP cells. Similar studies have described the synergistic apoptotic effects of TRAIL with daidzein or genistein on tumour cells. Daidzein was found to decrease the expression of the anti-apoptotic protein Bcl-2 and abolish resistance to TRAIL in LNCaP prostate cancer cells (50). Genistein was demonstrated to augment TRAIL-mediated apoptosis through the downregulation of anti-apoptotic proteins, Akt and Bcl-XL in A549 lung cancer cells, downregulation of anti-apoptotic protein FLIP in LNCaP prostate cancer cells, activation of caspase-3 in AsPC1 pancreatic and AGS gastric cancer cells, inhibition of p38 mitogen-activated protein kinase signalling and the decrease in expression of extra-cellular signal-regulated kinase ERK1/2 and protein Bcl-2 in HeLa cervical cancer cells (51-56). Our studies suggest that genistein, daidzein and equal exert TRAIL-mediated apoptotic effects at the level of the mitochondria. Co-treatment of LNCaP cells with TRAIL and isoﬂavones induced signiﬁcant disruption of ΔΨm, compared to each of these agents alone. Jin et al described the reversal of TRAIL-resistance in Hep3B hepatocellular cancer cells by genistein via cleavage of Bid. Silencing of Bid expression reduced the decrease of ΔΨm and blocked apoptosis in cancer cells treated with genistein and TRAIL (57). Baxa et al showed that genistein produced mitochondrial depolarization in the induction of apoptosis in murine T cells derived from thymic lymphomas (58). Moreover, Jin et al demonstrated that daidzein-mediated apoptosis in MCF7 breast cancer cells was accompanied by loss of ΔΨm and regulation of Bcl-2 family proteins (59).

These in vitro and in vivo tests have demonstrated the potential of natural polyphenols to enhance TRAIL-mediated apoptotic death in cancer (60). We showed for the first time that daidzein, genistein and equal sensitized TRAIL-resistant LNCaP prostate cancer cells, but further investigation is required to further elucidate the related cellular signalling pathways. Our study conﬁrms the hypothesis that the chemopreventive effects of isoﬂavones in soy foods or soy supplements are associated with the enhancement of TRAIL-induced apoptosis in prostate cancer cells.

Acknowledgements

This project was supported by the research grant KNW-1-087/10 from the Medical University of Silesia in Katowice, Poland.

References

