Leptin enhances migration of human papillary thyroid cancer cells through the PI3K/AKT and MEK/ERK signaling pathways

SHIH-PING CHENG¹,⁴,⁵, PEN-HUI YIN², YI-CHIUNG HSU⁶, YUAN-CHING CHANG¹, SHIH-YUAN HUANG¹, JIE-JEN LEE¹,⁴,⁵ and CHIN-WEN CHI²,³

¹Department of Surgery, Mackay Memorial Hospital, Taipei; ²Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei; ³Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei; ⁴Department of Pharmacology, Taipei Medical University, Taipei; ⁵Department of Medicine, Mackay Medical College, New Taipei City; ⁶Institute of Statistical Science, Academia Sinica, Taipei, Taiwan, R.O.C.

Received May 30, 2011; Accepted June 9, 2011

DOI: 10.3892/or.2011.1388

Abstract. The incidence of thyroid cancer has remarkably increased in recent years. Epidemiologic data suggest that obesity is associated with an increased incidence of several types of malignancies, including thyroid cancer. Leptin, an adipocyte-derived cytokine, has been shown to be involved in cancer development and progression. We previously demonstrated that papillary thyroid cancer expressing leptin receptor and/or leptin has a higher incidence of lymph node metastasis. In this study, we investigated the effects of leptin on cell migration in K1 and B-CPAP papillary thyroid cancer cells. Expression of leptin receptor was observed in both cell lines. Leptin enhanced the migratory activity significantly in a dose-dependent manner. We showed that leptin induced AKT and extracellular signal-regulated kinase (ERK) phosphorylation. Inhibition of phosphatidylinositol 3-kinase and AKT and extracellular signal-regulated kinases (ERK) 1/2 pathways. Several isoforms of leptin receptor resulting from alternative splicing share an identical N-terminal ligand-binding domain but differ at the C-terminal region (5). The long isoform with an extended intracellular domain containing motifs required for the interaction with other proteins and subsequent signaling pathway activation is the most important functional receptor. Leptin promotes cell proliferation of breast (10), hepatocellular (11), prostate (12), and endometrial (13) carcinoma cells through the phosphoinositide 3-kinase (PI3K)/AKT and extracellular signal-regulated kinases (ERK) 1/2 pathways. Moreover, leptin has been shown to stimulate migration and/or invasion of breast (14), hepatocellular (15), prostate (16), endometrial (13), and colon (17) carcinoma cells similarly via the activation of the PI3K/AKT and ERK 1/2 signaling cascades.

Introduction

Obesity is a major global health problem and has reached epidemic levels worldwide. There is convincing evidence from epidemiological data showing that obesity increases the risk for several types of cancer (1-3). Overweight-related changes of the adipose tissue lead to insulin resistance, chronic inflammation, and altered secretion of adipokines (4). These mechanisms synergistically contribute to cancer development and progression. Excess body weight is positively correlated with serum levels of adipocyte-derived obesity hormone, leptin (5). Leptin was originally discovered as a hormone regulating appetite and energy expenditure. However, recent studies indicate that leptin has mitogenic, anti-apoptotic, proinflammatory, and angiogenic properties and plays an important role in the link between obesity and cancer (6,7).

Leptin is a 16 kDa polypeptide encoded by the obese (OB) gene (8). Leptin exerts its physiological and pathophysiological effects by binding to the trans-membrane leptin receptor (9). Several isoforms of leptin receptor resulting from alternative splicing share an identical N-terminal ligand-binding domain but differ at the C-terminal region (5). The long isoform with an extended intracellular domain containing motifs required for the interaction with other proteins and subsequent signaling pathway activation is the most important functional receptor. Leptin promotes cell proliferation of breast (10), hepatocellular (11), prostate (12), and endometrial (13) carcinoma cells through the phosphoinositide 3-kinase (PI3K)/AKT and extracellular signal-regulated kinases (ERK) 1/2 pathways. Moreover, leptin has been shown to stimulate migration and/or invasion of breast (14), hepatocellular (15), prostate (16), endometrial (13), and colon (17) carcinoma cells similarly via the activation of the PI3K/AKT and ERK 1/2 signaling cascades.

The increased prevalence of obesity is accompanied with the rising incidence of thyroid cancer (18). A comprehensive systematic review found that an increase of body mass index (BMI) by 5 kg/m² was associated with increased risk of thyroid cancer in both men and women with a relative risk of 1.33 and 1.14, respectively (1). Subsequently, the French E3N study including 91,909 women confirmed a significant dose-effect relationship between BMI and thyroid cancer risk (19). At present, the mechanisms for the risk associated between obesity and thyroid cancer are poorly understood. Interestingly, serum leptin levels in patients with papillary thyroid cancer are significantly higher than BMI-matched
control subjects (20). The leptin levels decreased after total thyroidectomy but remained higher than the control group levels. It raises the possibility that leptin may be involved in the pathogenesis of thyroid cancer.

Using immunohistochemical analysis, we and others have reported that leptin and leptin receptor were overexpressed in papillary thyroid cancer and metastatic lymph nodes (21,22). Expression of leptin receptor and/or leptin in primary tumors was associated with higher incidence of lymph node metastasis. Our pilot study also suggested that leptin may modulate migration of thyroid cancer cells (23). However, Schweppe and colleagues recently showed that many of the thyroid cancer cell lines are cross-contaminated or misidentified (24). Although the CGTH-W3 cell line we previously used was not included in their report, in the present study, we re-verified key experiments and expand our prior findings by elucidation of the signal transduction pathways involving leptin-induced migration in papillary thyroid cancer cells.

Materials and methods

Cell culture and reagents. The human papillary thyroid carcinoma cell lines K1 and B-CPAP were purchased from the European Collection of Cell Cultures (ECACC; Salisbury, UK) and the German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany), respectively. K1 cells were cultured at 37°C in a humidified atmosphere of 5% CO₂ in Dulbecco’s modified Eagle’s medium (Invitrogen/Gibco, Carlsbad, CA) mixed with Ham’s F12 (Gibco) and MCDB 105 (Sigma, St. Louis, MO) medium in 2:1:1 proportions, supplemented with 10% fetal bovine serum (FBS) and 2 mM L-glutamine. B-CPAP cells were cultured in RPMI-1640 medium (Gibco) supplemented with 10% FBS. These cancer cells have been recently authenticated to be unique thyroid cancer cell lines (24). Recombinant human leptin for treatment was purchased from Invitrogen. PD98059 and LY294002 were obtained from Sigma.

Cell growth. Cell growth was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay. Briefly, cells were seeded into 96-well plates one day before 24-h serum starvation and then incubated with leptin at indicated concentrations with or without FBS. Harvested cells were incubated in the medium containing 5 mg/ml of MTT reagent (Sigma) at 37°C for 4 h. The formazan crystals converted from tetrazolium salts by viable cells were dissolved in dimethyl sulfoxide (150 µl/well) and the absorbance at 570 nm was measured by a microplate spectrophotometer.

Protein extraction and Western blot analysis. Whole cell lysate was prepared by resuspending cells in M-PER protein extraction reagent (Thermo Scientific/Pierce, Rockford, IL) according to the manufacturer’s instructions. Cell lysates were centrifuged at 14,000 x g for 10 min and supernatant collected. Protein concentration was measured using Bradford assay (Bio-Rad Laboratories, Hercules, CA). An aliquot of protein lysate (30 µg) from each sample was mixed with 10X Laemmli sample buffer (Bio-Rad), and protein lysate was separated in 10% SDS-polyacrylamide gels. After transfer sample to nitrocellulose membrane, the membrane was blocked with 5% skimmed milk for 30 min at room temperature. The proteins were probed with antibodies against short and long forms of leptin receptor (H-300, sc-8325; Santa Cruz Biotechnology, Santa Cruz, CA), long-form specific leptin receptor (C-20, sc-1832; Santa Cruz Biotechnology), phosphorylated AKT (pAKT-Ser473, #9271; Cell Signaling, Danvers, MA), AKT (06-608; Millipore/Upstate, Lake Placid, NY), phosphorylated ERK (pERK-Thr202/Tyr204, M0962; Sigma), ERK (#4696; Cell Signaling), β-actin (A5316; Sigma), and α-tubulin (T6074; Sigma) overnight at 4°C. After three washes, the blots were subsequently incubated with peroxidase-conjugated secondary antibodies (Sigma) for 1.5 h at room temperature. The blots were visualized with enhanced chemiluminescence kit (Pierce) and Amersham Hyperfilm ECL (GE Healthcare, Piscataway, NJ).

Transwell migration assay. Cells were trypsinized, resuspended in serum-free media; then 1x10⁵ cells were added to a 24-well chamber (#3422; Corning Inc., Corning, NY). The upper and lower chambers were separated by a polycarbonate membrane with 8-µm pore size and 10-µm membrane thickness. Complete medium containing 10% FBS as the chemoattractant was added to the lower chambers. The cells were allowed to migrate for 6 h (B-CPAP cells) or 8 h (K1 cells) at 37°C in a humidified atmosphere containing 5% CO₂. Cells on the upper side of the membrane were removed by PBS-rinsed cotton swabs. The membrane was fixed by 100% methanol for 20 min at 4°C and stained with Giemsa solution (Sigma). Cells on the lower side of the membrane were counted using a light microscope in ten random high-power microscopic fields at x100 magnification. The mean number of migrated cells was then normalized to the vehicle control.

Wound healing assay. Cells were seeded onto a culture insert (0.22 cm² growth area with a cell-free gap of 500 µm; ibidi GmbH, Munich, Germany) in complete culture media. After 24 h, the culture insert was removed allowing confluent cells to migrate across the gap. Cells were incubated in serum-free media without or with various concentrations of leptin. At 8 h, cells were observed under microscopy and photographed.

Statistical analysis. All experiments were independently performed at least three times. Bar graphs with error bars represent mean ± standard error of the mean (SEM). Data were analyzed using two-tailed Student’s t-test. A difference of P<0.05 between groups was considered significant.

Results

Papillary thyroid cancer cells express leptin receptor. The expression of leptin receptor in human papillary thyroid cancer cell lines was investigated by Western blotting. Using C-20 long-form specific antibody, full-length long isoform of leptin receptor was detected in K1 and B-CPAP cells (Fig. 1A). Western blot analysis using H-300 antibody against short and long forms of leptin receptor showed that both isoforms were expressed in these two cell lines (Fig. 1B).
Leptin does not influence cell growth of papillary thyroid cancer cells. K1 and B-CPAP cells were serum-starved and treated with serial doses of leptin. There was no significant change in cell growth (Fig. 2).

Leptin enhances cell migration of papillary thyroid cancer cells. Previously, we have demonstrated that leptin modulates thyroid cancer cell migration (23). To investigate our previous observation in these validated cell lines, migration of thyroid cancer cells was assessed using transwell migration assay after treatment with physiological concentrations of leptin (5-125 ng/ml) or vehicle. Leptin stimulated dose-dependent migration of K1 and B-CPAP cells (Fig. 3A). A significant stimulation was observed at a dose of 125 ng/ml in both cell lines. Consequently, we used this dose for the following experiments. These results were further verified using wound healing assay. The migratory ability of K1 and B-CPAP cells clearly increased in response to leptin treatment (Fig. 3B).

Leptin induces AKT and ERK phosphorylation in papillary thyroid cancer cells. We next investigated the leptin-induced intracellular signaling pathway in thyroid cancer cells. Because leptin-induced signaling have been reported to be mediated via the PI3K/AKT and mitogen-activated protein kinase (MAPK) signaling pathways (10-17), we examined whether leptin could induce AKT and ERK phosphorylation in K1 and B-CPAP cells. Total cellular proteins were extracted from cells treated with 125 ng/ml leptin for various time periods. The experiments showed that AKT and ERK phosphorylation was stimulated by leptin in a time-dependent fashion (Fig. 4). The levels of phosphorylated forms of AKT and ERK were increased as soon as 10 min after leptin treatment. Leptin had no effect on total ERK and AKT protein expression levels.

PI3K/AKT and MEK/ERK mediate leptin-induced cell migration. To clarify the role of PI3K/AKT and MAPK pathways
in leptin-induced cell migration, we used pharmacological inhibitors to determine the dependence of these signaling kinases on the migration-stimulating effect of leptin. As shown in Fig. 5A, pretreatment of K1 and B-CPAP cells with PI3K inhibitor LY294002 inhibited the phosphorylation of AKT protein without affecting the total AKT expression. As expected, pretreatment with MEK kinase inhibitor PD98059 blocked the leptin-induced ERK phosphorylation (Fig. 5B).

It was further examined whether these specific inhibitors prevent leptin-induced cell migration. Pretreatment with LY294002 or PD98059 significantly inhibited the migration capacity induced by 125 ng/ml leptin in K1 and B-CPAP cells.
Taken together, these results indicate that the increase of p-AKT and p-ERK levels play an important role in leptin-stimulated cell migration in human papillary thyroid cancer cells.

Discussion

Leptin is an adipokine produced and secreted mainly by the adipose tissue in proportion to fat stores. Many adipokines and/or their receptors are now recognized to be expressed ectopically by cancer cells (6,7). In turn, cancer cells may respond to adipokines in an endocrine, paracrine, or autocrine fashion. The mechanisms of altered expression of leptin and/or leptin receptor in malignant tumors are still little known and might be related to the carcinogenesis process. Frequency of leptin expression dramatically increases from normal colonic mucosa to adenomas and adenocarcinomas along with neoplastic progression (25). Previously we have shown that leptin and leptin receptor are co-expressed in thyroid cancer tissues and cancer cells (21,23), suggesting the possibility of autocrine/paracrine regulation. In obesity, adipose tissue hypoxia is an important factor in the development of inflammatory response, increased leptin and reduced adiponectin gene expressions (26). In breast cancer cells, leptin can be up-regulated in response to hypoxia or hyperinsulinemia (27,28). The role of hypoxia in up-regulation of leptin receptor and/or leptin in thyroid cancer deserves further investigation.

We also found that the mechanism by which leptin mediated its effects on migration of thyroid cancer cells appears to involve the activation of PI3K/AKT and MAPK pathways. Aberrant activation of the PI3K/AKT and MAPK signaling pathways plays a fundamental role in thyroid tumorigenesis (29,30). Apart from genetic alterations such as activating mutations of the BRAF and RAS genes, other upstream activators may also simulate these signaling in thyroid cancer. Liu *et al* (31) examined mutations and copy number gains of a large panel of genes in thyroid cancer, showing that most anaplastic (90%) and follicular (86%) cancer harbored at least one genetic
alteration. Interestingly, phosphorylated AKT immunoreactivity without genetic alterations was identified in two cases. In another study of follicular variants of papillary thyroid cancer, two of the 30 tumors had ERK phosphorylation independent of gene mutation status that was studied (32). Therefore, although it is well known that some genetic alterations lead to PI3K/AKT and MAPK activation in thyroid cancer, other factors, including leptin through leptin receptor, may also activate these pathways and participate in the pathogenesis of thyroid cancer.

This study revealed that leptin-stimulated migration of thyroid cancer cells depends on PI3K/AKT and MAPK pathways. This is in keeping with the observation of others (13-17). We and others have shown that papillary thyroid cancer with expression of leptin receptor and/or leptin is associated with the risk of nodal metastasis (21,22). The same oncogenic signaling cascade initiating transforming events in thyroid cancer cells also sustains their motile and invasive properties (33). MAPK pathway has been shown to promote cell adhesion turnover, contributing to tumor cell motility and invasion (34). This may explain why papillary thyroid cancer with BRAF mutations is more likely to be metastatic (35). In the present study, compared to vehicle control, MEK kinase inhibitor PD98059 directly suppressed migration of B-CPAP cells (Fig. 6). Furthermore, AKT is also a critical modulator of cell migration and invasion in thyroid cancer (36). Specific inhibition of AKT1 may reduce thyroid cancer cell migration in vitro (37). Collectively, these data support the important role of PI3K/AKT and MAPK pathways activated by leptin during thyroid cancer metastasis.

Although papillary thyroid cancer expressing leptin receptor and/or leptin is associated with larger tumor size (21,22), this study does not support the hypothesis that leptin promotes cell proliferation in thyroid cancer. Uddin et al (22) demonstrated that leptin could stimulate cell proliferation and inhibit apoptosis in B-CPAP and 8505C cell lines via the activation of PI3K/AKT signaling pathway. However, we found that leptin had no effect on cell growth in B-CPAP and 8505C thyroid cancer cells (Fig. 2 and data not shown). The basis for such a difference is presently unclear. As for the discrepancy between tissue expression and cellular studies, it may be due to limitations of current cell-based models. Thyroid epithelial cells are highly polarized with distinct apical and basolateral regions (38). Monolayer cells grown in culture dishes lose the glandular structure and may not provide the optimal system for fully understanding the regulation of cell proliferation and interactions with microenvironment (39). Alternatively, a plausible explanation is the concept of self-seeding (40). Cells that disseminate from a tumor may circulate throughout the body and repopulate the tumor at distant sites. Therefore, although large tumor burden generally reflects an increased proliferation, abnormal cell mobility could also contribute to the tumor growth.

In conclusion, this study clearly provides the molecular mechanisms responsible for the leptin-stimulated migration of papillary thyroid cancer cells. Considering that thyroid cancer expressing leptin receptor and/or leptin has higher incidence of nodal metastasis, the identification of leptin-mediated signaling pathways offers a novel potential target for the management of papillary thyroid cancer.

Acknowledgements

This study was supported by research grants from Mackay Memorial Hospital (MMH-9867 and MMH-9946), Taipei Veterans General Hospital (V99C1-053) and Center of Excellence for Cancer Research at Taipei Veterans General Hospital (DOH99-TD-C-111-007).

References

