CXCL12 mediates apoptosis resistance in rat C6 glioma cells

KIRSTEN HATTERMANN1, ROLF MENTLEIN1 and JANKA HELD-FEINDT2

1Department of Anatomy, University of Kiel, D-24098 Kiel, Germany; 2Department of Neurosurgery, University Medical Center Schleswig-Holstein, D-24105 Kiel, Germany

Received December 5, 2011; Accepted January 17, 2012

DOI: 10.3892/or.2012.1674

Abstract. The chemokine CXCL12/stromal cell-derived factor-1 (SDF-1) and its receptor CXCR4 regulate migration and patterning processes during brain development, but also contribute to proliferation and expansion of gliomas, the most malignant brain tumors. Recently, a previous orphan-receptor CXCR7/RDC-1 was discovered to be a second receptor for CXCL12. CXCR7 has been detected in normal brain parenchyma, but in particular in human brain tumors. However, little is known about the functional relevance of CXCR7. Since the well-characterized rat C6 glioma cell line is commonly used as a glioma model in vitro and in vivo, we investigated the expression, regulation and function of CXCL12 and its receptors in these tumor cells. Whereas CXCL12 and CXCR7 were transcribed at notable levels, CXCR4 was quite low. By sublethal doses of temozolomide, an alkylating drug commonly used in adjuvant glioma therapy, transcription of CXCL12 and its receptors were significantly induced. Decreased proliferation resulting from this sublethal treatment with temozolomide could be completely restored to normal proliferation rates by simultaneous stimulation with CXCL12. Similarly, CXCL12 protected C6 cells from apoptosis under treatment with higher temozolomide doses. Thus, the CXCL12-CXCR7 axis promotes glioma progression, and the rat C6 glioma cell line may be a useful model to further investigate these mechanisms in vitro and in vivo.

Introduction

Gliomas are the most common type of primary brain tumors, and glioblastoma multiforme (GBM) is the most malignant form. Current standard therapy is surgical resection followed by adjuvant radiotherapy combined with chemotherapy. Despite recent advances in surgical techniques and adjuvant therapy, prognosis for GBM patients is still poor, with a median survival time of approximately 12-15 months (1). This is mainly due to rapid recurrence of intracranial tumor foci which is caused by diffusive infiltrative proliferation and resistance to adjuvant therapy of remaining glioma cells after surgery. Therefore, knowledge of proliferative, chemotactic and invasive factors is of crucial importance to improve therapies.

Chemokines are a family of small peptides (8-15 kDa) that were first discovered as cytokines with chemotactic properties (2). Interacting with their G-protein coupled seven-transmembrane receptors, they are responsible for leukocyte trafficking and intercellular communications (3). In the central nervous system, chemokines and their receptors are involved in various processes in health and disease, including neuronal patterning (4), migration and proliferation of glial precursor cells (5) and angiogenesis (6). Furthermore, they play decisive roles in tumor initiation, promotion, progression and metastasis (7,8). Especially the chemokine CXCL12/SDF-1 (stromal cell-derived factor-1) has attracted great interest as it directs CXCR4-expressing tumor cells to peripheral tissues like the lung, liver, lymph nodes and bone marrow (9).

In human glioblastomas, CXCL12 and its receptor CXCR4 are localized in regions of necrosis and angiogenesis (10), and mediate proliferation of glioblastoma progenitor cells (11). Recently, a second receptor for CXCL12 was deorphanized and named CXCR7 (12) which, in addition to CXCL12, binds CXCL11/I-TAC (interferone-inducible T cell chemoattractant) with a 10-fold lower affinity.

In the CNS, CXCR7 can be found in the developing and adult rat brain (13), in primary rat astrocytes and Schwann cells (14), and it is upregulated in vivo and in vitro during maturation of oligodendrocytes (15). In human glioblastomas CXCR7 is located on tumor-associated capillaries and on the mass of tumor cells (16).

Although CXCR7 was at first supposed to be merely a decoy receptor (17), recent reports show that CXCR7 directly mediates cellular effects beside its function in controlling extracellular CXCL12 levels, facilitating and regulating CXCR4-mediated effects like migration (18) and reduction of temozolomide-induced apoptosis (16).

Since rat C6 glioma cells are an often used in vitro and in vivo model for gliomas, we investigated the expression of
CXCL12, CXCR4 and CXCR7 in this cell line, their regulation upon temozolomide treatment, and the CXCL12-mediated effects on proliferation and apoptosis caused by temozolomide treatment.

Materials and methods

Peptides and inhibitors. Recombinant rat CXCL12 was obtained from PeproTech (Rocky Hill, NJ, USA). Temozolomide was purchased from Sigma-Aldrich/Fluka (St. Louis, MO, USA) and dissolved in DMSO (Sigma-Aldrich; stock concentration 20 mg/ml). The specific CXCR7 antagonist CCX733 was a kind gift from M.E.T. Penfold and T.J. Schall from Chemocentryx, (Mountain View, CA, USA).

Cultivation and stimulation of glioma cells. The rat glioma cell line C6 was obtained from Deutsches Krebsforschungszentrum (DKFZ; Heidelberg, Germany). Cells were cultivated in Dulbecco's modified Eagle's medium (DMEM; Invitrogen, Carlsbad, CA, USA) plus 10% fetal calf serum (FCS; Invitrogen) and routinely checked for purity by immunostaining (19) on glial fibrillary acidic protein (GFAP; Dako, Glostrup, Denmark) and for Mycoplasma contamination by staining with 4',6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich).

Quantitative RT-PCR (qRT-PCR). For mRNA expression analysis, cells were harvested using the QIAzol lysis reagent (Qiagen, Hilden, Germany) and total RNA was isolated following the manufacturer's instructions. Genomic DNA was digested by RNase-free DNase (1 U/µl, Promega, Madison, WI, USA), and cDNA was synthesized using RevertAid™ H Minus M-MuLV Reverse Transcriptase (200 U/µl, Fermentas, WI, USA), and cDNA was synthesized using RevertAid™ H Minus M-MuLV Reverse Transcriptase (200 U/µl, Fermentas, Vilnius, Lithuania). Real-time RT-PCR was performed as previously described (20) using TaqMan primer probes (Applied Biosystems, Foster City, CA, USA): rGAPDH (Rn099999916_s1), rCXCL12 (Rn00573260_m1), rCXCR4 (Rn00573522_s1), rCXCR7 (Rn00584358_m1), rGFAP (Rn00566603_m1), rSox2 (Rn01286286_g1), rMusashi1 (Rn00596059_m1), rCD133 (Rn00572720_m1), rNestin (Rn00566934_m1). Samples were analyzed in duplicates. Reactions were performed and the Cycle of Threshold values (∆CT) were measured with the MyiQ™ Single Color Real-time PCR Detection System (Bio-Rad, Munich, Germany), and ∆CT values = CT(gene of interest) - CT(GAPDH) were calculated. Due to a logarithmic reaction process, a ∆CT value of 3.33 corresponds to one magnitude lower gene expression compared to GAPDH. For stimuli-induced mRNA regulation ∆∆CT values were calculated: ∆∆CT = 2 ^ [(∆CT(stimulus) - ∆CT(control)) - (∆CT(stimulus) - ∆CT(control))].

Immunocytochemistry. Rat C6 glioma cells were seeded onto poly-D-lysine-coated coverslips and grown for 24 h. Then, cells were washed with phosphate-buffered saline (PBS) and pre-incubated with serum-free medium or serum-containing growth medium for 1 h. Cells were fixed with ice-cold acetone/methanol 1:1 (10 min) or Zamboni’s fixative (4% paraformaldehyde + picric acid, 30 min), blocked with 0.5% bovine serum albumin/0.5% glycine in PBS (60 min) and incubated with mouse anti-CXCR7 (clone 11G8, a kind gift from M.E.T. Penfold and T.J. Schall from Chemocentryx, dilution 1:200). The secondary antibody was goat anti-mouse IgG Alexa Fluor 488 (Invitrogen, dilution 1:1000), and nuclei were counterstained with DAPI. Slides were viewed with an Axiosvert 200 microscope (Carl Zeiss, Jena, Germany).

Proliferation assays. For proliferation assays, 50,000 cells were seeded onto 35-mm culture dishes (Greiner Bio-One, Frickenhausen, Germany) and pre-cultivated for 24 h in DMEM with 10% FCS. The medium was changed to DMEM + 0.5% FCS and stimuli were added (3 individual dishes for each stimulus). The medium supplied with stimuli was renewed after 3 days, and the cells were harvested 2 days later. DNA was measured fluorimetrically as previously described (21) using the CYQUANT® Cell Proliferation Assay Kit (Invitrogen). Measured DNA contents were normalized to unstimulated controls (= 100%).

Apoptosis assay. Apoptosis was analyzed by a modified Nicoletti staining (22). Cells were seeded onto poly-D-lysine-coated coverslips and pre-cultivated for 24 h in DMEM + 10% FCS. Stimulations were performed in DMEM + 0.5% FCS for 48 h. After rinsing with PBS cells were fixed with ice-cold acetone/methanol (1:1; 10 min), washed 3x with PBS, nuclei were stained with DAPI and slides were embedded with Immumount (Shandon, Pittsburgh, PA, USA). Samples were viewed and pictures were taken with an Axiosvert 200 M fluorescence microscope (Zeiss, Oberkochem, Germany). Apoptotic nuclei were evaluated and counted in a blinded manner.

Statistical analysis. Values are expressed as means ± standard deviations of the mean (SD). Statistical significance was analyzed by a two-tailed Student's t-test. *P<0.05 and **P<0.01.

Results

Transcription of chemokine/receptors and cell markers in rat C6 glioma cells. Initially, we analyzed the rat glioma cell line C6 by qRT-PCR for expression of the chemokine CXCL12 and its receptors CXCR4 and CXCR7 and for cell markers which can typically be found in gliomas (Fig. 1A). The glioma cells showed considerable mRNA amounts of the chemokine CXCL12 (∆CT=9.9±1.1) and its receptor CXCR7 (∆CT=9.1±0.2) while expression of the receptor CXCR4 was less prominent (∆CT=14.6±1.2).

Furthermore, the cells were characterized by moderate levels of GFAP (glial fibrillary acidic protein; ∆CT=9.5±1.8), a marker for astrocytes which is also mostly expressed by glioma cells, and nestin (∆CT=4.7±0.6), a marker for astrocyte progenitors as well as for reactive astrocytes. Furthermore, we tested for Musashi-1, Sox-2 and CD133 (prominin-1), which are markers for (neural) stem and progenitor cells, and are discussed as markers for the stem cell character of glioma cells regarding the tumor stem cell hypothesis (23). Transcription of CD133, a transmembrane glycoprotein is very low (∆CT=17.5±0.5), just above the detection limit, while the RNA-binding protein Musashi-1 is expressed at moderate level (∆CT=12.6±0.3) and the transcription factor Sox-2 at a comparably high level (∆CT=7.0±0.7).

CXCL12 and its receptors CXCR4 and CXCR7 are induced by temozolomide. To investigate the influence of temozolomide
on the transcription of CXCL12 and its receptors we stimulated C6 cells with 20 µg/ml temozolomide (or 0.1% DMSO as solvent control) for 24 h and analyzed mRNA expression by qRT-PCR (Fig. 1B). The chemokine CXCL12 was clearly upregulated (2.5±0.8-fold), and also its receptors CXCR4 (1.5±0.3-fold) and CXCR7 (2.0±0.3-fold) were significantly induced by temozolomide (paired Student's t-test). The transcription of the cell markers GFAP, Nestin, Musashi-1, Sox-2 and CD133 was not significantly influenced by temozolomide treatment.

Surface and intracellular expression of CXCR7. Chemokine receptors are usually internalized upon binding of their appropriate ligand and are subjected to intracellular recycling processes (24) which is also reported for CXCR7 (25). As surface expression of CXCR7 is crucial for cellular responses elicited by binding of its ligands, we next analyzed surface and intracellular expression of CXCR7 by fluorescence immunocytochemistry. C6 glioma cells were pre-incubated with serum-free medium for 1 h to allow for re-expression of CXCR7 at the cell surface, or with normal growth medium containing fetal calf serum. After fixation with Zamboni's fixative which does not permeabilize the cells and therefore allows only surface detection of antigens, serum-deprived cells show stronger surface expression of CXCR7 compared to non-starved cells (upper row), whereas intracellular immunoreactivity (acetone/methanol fixation, lower row) is stronger in non-starved cells.

CXCL12 abrogates the antiproliferative effects of temozolomide. Due to the induction of CXCL12 and its receptors in C6 glioma cells we hypothesized that CXCL12 could contribute to rescue mechanisms against the cytotoxicity of temozolomide. Thus, we investigated the effects of CXCL12 on proliferation in long-term stimulation with sublethal concentrations of temozolomide. The alkylating agent temozolomide which is commonly used in glioma therapy was applied to C6 glioma cells for 5 days (serum-low medium and stimuli renewed after 3 days) with or without simultaneous stimulation with 1 nM CXCL12, and DNA content was measured to analyze effects on proliferation. In Fig. 3, one representative experiment of the 3 is shown. Temozolomide treatment reduced proliferation to 85.9±9.6% (20 µg/ml) or 66.1±1.6% (100 µg/ml), whereas the solvent control (1% DMSO) did not significantly reduce the proliferation rate (93.1±5.8%). Simultaneous stimulation with 1 nM CXCL12 could restore normal proliferation in
Discussion

The rat C6 glioma cell line was generated by isolation of SI100-expressing cells from a rat glioma induced by N-methyl-N-nitrosourea (26). It is characterized by moderate expression of stem cell markers and the astroglial marker GFAP which is comparable to human glioblastoma cell lines isolated from solid glioblastoma tissue samples. However, further differentiation by activation of IL-6 pathways is possible (27). C6 cells transcribe the chemokine CXCL12 and its receptors CXCR7 in considerable amounts, while the alternative receptor CXCR4 is expressed to a lower extent. The chemotherapeutic agent temozolomide induces transcription of CXCL12 as well as its receptors CXCR4 and CXCR7 suggesting a functional role in the cellular response to this cytotoxic challenge. Indeed, simultaneous stimulation with CXCL12 and sublethal temozolomide doses could restore normal proliferation rates, and could reduce the percentage of apoptotic cells in high-dose treatment.

The expression balance of CXCL12 and its receptors CXCR4 and CXCR7 seems to be linked to differentiation and maturation, especially in the CNS. While CXCR4 is reported to be more important during brain development, especially in migration and survival of neuronal and oligodendroglial precursor cells (28), CXCR7 is induced during maturation of glial cells (15), and is the predominant receptor for CXCL12 in the adult rodent brain (13). This seems to be reproduced during glioblastoma pathogenesis where glioblastoma stem-like cells show high CXCR4 and low CXCR7 levels and more mature glioblastoma cells switch to a predominant CXCR7 expression (16).

When CXCR7 was discovered, it was supposed to be a non-signaling decoy or scavenger receptor for CXCL12 as it fails to couple to G-proteins due to alteration in a conserved DRYLAIV-motif (17), and does not cause Ca$^{2+}$ mobilization upon activation as is known for most chemokine receptors (29). However, recent investigations have shown that CXCR7 can signal via β-arrestin (30) resulting for example in CXCL12-dependent activation of MAP-kinase in interneurons in vivo (31), and MAP-kinase and Akt pathways in primary rat astrocytes and Schwann cells (14) and human glioblastoma cell lines (16). Furthermore, the second ligand for CXCR7, CXCL11 can also induce activation of MAP-kinase and Akt signaling pathways (32) and has chemotactic properties on vascular smooth muscle cells (30). Examples of the reported effects of CXCL12 via CXCR7 are chemotaxis in T lymphocytes (12), angiogenesis and invasion in hepatocellular carcinomas, while metastasis...
was not affected (33), and increased tumor growth of various tumor types in vivo (29,34). The latter might be explained by CXCL12-CXCR7-mediated advantage in survival of injected tumor cells and escape from the host’s immune defense. However, in human glioblastoma cells, the CXCL12-CXCR7-axis promotes a rescue from chemically-induced apoptosis (16) which is corroborated by our new results in rat C6 glioma cells.

In summary, rat C6 glioma cells may serve as a glioblastoma model in vitro and in vivo as they show characteristics of human glioblastoma cells, and, like in human glioblastoma cell lines, CXCL12 mediates anti-apoptotic effects via its recently discovered receptor CXCR7.

Acknowledgements

We thank Martina Burmester, Miriam Lemmer, Brigitte Rehnik and Jörg Krause for expert technical assistance and Marc E.T. Penfold and Thomas J. Schall for generously providing CXCR7 antibodies and antagonists. Financial support was provided by the University of Kiel.

References