Alteration of MMP-2 and -14 expression by imatinib in HPV-positive and -negative squamous cell carcinoma

ANNE FABER1, ALEXANDER SAUTER1, SARAH HOEDT1, KARL HOERMANN1, PHILIPP ERBEN2, RALF-DIETER HOFHEINZ2, ULRICH SOMMER1, JENS STERN-STRAETER1 and DAVID JOHANNES SCHULTZ1

Departments of 1Otorhinolaryngology Head and Neck Surgery, 2Hematology and Oncology, University Medical Centre Mannheim, D-68167 Mannheim, Germany

Received December 31, 2011; Accepted February 9, 2012

DOI: 10.3892/or.2012.1766

Abstract. Head and neck squamous cell carcinoma (HNSCC) is an aggressive epithelial malignancy. It is known to be the most common neoplasm appearing in the upper aerodigestive tract. The poor 5-year survival rate has remained unchanged in the last decades even though improved techniques in surgery, radiation and chemotherapy have been established. In contrast to the overall decreasing incidence of head and neck cancer in the US, the incidence of HPV-associated oropharyngeal cancer is increasing, indicating the importance of viral etiology. Furthermore, growth and invasion of HNSCC are strongly influenced by the extracellular matrix (ECM). Matrix metalloproteinases (MMP) have been shown to play key roles in the remodeling of the ECM. Imatinib (STI 571) was originally designed to inhibit the BCR-ABL tyrosine kinase in chronic myeloid leukaemia. But it also has an inhibitory impact, e.g., on the protein-tyrosine-kinase (PTK) receptor c-kit and on its PTK activity in HNSCC. In this study, we incubated the HNSCC cell lines HNSCC 11A and 14C and the p16-positive SCC line CERV196 with increasing concentrations of imatinib or carboplatin. After an incubation time of up to 10 days, we evaluated MMP-2 and -14 expression by ELISA techniques and immunohistochemistry. MMP-2 and -14 expression was demonstrated in all incubated tumor cell lines. Especially incubation with imatinib resulted in a significant decrease in MMP expression in incubated cell lines. Our results indicate that the expression of MMP-2 and -14 is suppressed in the presence of imatinib. Thus, imatinib may exert in part its inhibitory effect on malignant cell growth via the blockage of the signal transduction of PTK receptors. Further studies are warranted, especially keeping in mind the moderate toxicity of imatinib.

Introduction

Head and neck squamous cell carcinoma. Head and neck squamous cell carcinoma (HNSCC) is an aggressive epithelial malignancy. It is the most common neoplasm arising in the upper aerodigestive tract. According to actual data, HNSCC is the sixth of the most common cancers in the world (1). Unfortunately, the survival rate for this type of cancer has not improved significantly in the past 25 years (2). The overall 5-year relative survival rate for HNSCC is less than 50% (3). The management of the malignancy requires multimodal therapy including surgery, chemoradiation or a combination of these strategies (2). Chemotherapy is employed in the majority of advanced cases, but the response rates are poor (3). Thus, new treatment modalities are developed to improve long-term survival in HNSCC disease. In the past few years, many biological markers have been described in HNSCC. For example, various studies have suggested potential prognostic values for p53 mutations, enhanced expression of epidermal growth factor (EGFR), transforming growth factor-α (TGF-α) or cyclin D1 (4-6). More recently, novel CD44v6 targeting humanized antibodies were coupled with toxic substances in order to improve response rates in HNSCC (7,8).

Human papilloma virus. In the past 20 years increasing evidence has accumulated, that there is a subset of squamous cell carcinoma, that is induced by oncogenic forms of the human papilloma virus (HPV). High-risk HPV infection has been shown to be associated with anogenital carcinomas including cervical, anal, vulvar and penile cancers (9,10) and more recently, breast cancer (11). In contrast to the decreasing incidence of head and neck cancers overall in the US in recent years, the incidence of HPV-associated oropharyngeal cancer is rising, indicating the increasing importance of viral etiology (12). In the US, 40-80% of oropharyngeal cancers are associated with HPV. In Europe data are heterogeneous and vary from 20% in countries with high consumption of tobacco and alcohol to 90% in Sweden. This suggests that HPV is now the primary cause of tonsillar carcinoma in North America and

Key words: imatinib, MMP-2, MMP-14, head and neck squamous cell carcinoma, head and neck squamous cell carcinoma, protein-tyrosine-kinase, human papilloma virus
The International Agency for Research on Cancer (IARC) designated HPV as a risk factor for cancerogenesis of oropharyngeal cancer and recent molecular and epidemiological data support this theory (18,19). HPV-positive HNSCC occur more often in younger patients with minimal tobacco exposure but more exposure to marijuana, oral sex or multiple sexual partners (20). This is consistent with the known predominant means of HPV transmission via sexual contact (21). HPV-positive HNSCC patients are often of higher socioeconomic status with better dentition, nutritional status and overall health compared to HPV-negative patients (13). HPV is a circular, double-stranded DNA-virus. The viral genome, consisting of approximately 8000 base pairs, encodes two regulatory proteins, three oncoproteins (E5, E6 and E7) and two structural capsid proteins (L1 and L2) (14). At present, the family of Papillomaviridae contains at least 200 genotypes or subtypes based on the ability to infect mucosal surfaces and based on genomic characteristics (22). These subtypes can be classified in low- and high-risk subpopulations based on their capacity to persist in basal mucosal cells, thereby avoiding the clearance of the immune system and by expression of viral oncopenes. Mucosal HPV infections are known to be associated with a spectrum of human diseases, ranging from benign papillomas to invasive carcinomas such as cervical, vulvar, vaginal, anal, penile and more recently HNSCC (13).

Protein tyrosine kinases. An essential element of signal transduction pathways are protein tyrosine kinases (PTK). The intracellular signal transduction is of essential interest in cell growth, metastasis and apoptosis. Numerous factors regulate the activities of these PTKs. However, genetic alterations of PTKs often cause malignant transformations (23). Especially transmembrane PTK receptors are of interest. These receptors are responsible for the transduction of signals from outside and inside the cell. PTKs are impotant targets for chemical agents that inhibit their activity. In HNSCC mainly the EGFR-PTK inhibitor gefitinib (Iressa®) has been studied extensively (24).

Imatinib. The PTK inhibitor imatinib (Glivec® or Gleevec®, also known as STI 571, Novartis, Basel, Switzerland) belongs to the 2-phenylaminopyrimidine class, which was developed for its selectivity against BCR-ABL in patients with chronic myeloid leukemia (CML) (25), but it is also an inhibitor of platelet-derived growth factor receptor (PDGFR) PTK (26,27). Recently, the crucial role of PDGFR in HNSCC growth has been described (28). The inhibitory effects of imatinib occur by binding with non-reserved amino-acid residues in the ATP-binding site of mutant PTKs (26). In consequence the auto-phosphorylation is being blocked and an alteration of the PTK is taking place.

Matrix metalloproteinases. Matrix metalloproteinases (MMP) represent a family of zinc- or calcium-dependent endopeptidases. MMPs degrade as gelatinases the extracellular matrix (ECM). This degradation of the ECM plays a key role in tumor angiogenesis, progression and facilitates metastasis. Expression of MMP-2 is associated with tumor invasion and metastasis in HNSCC (29). Okada et al reported that the majority of MMPs are generated in the stromal compartment by fibroblast tissue surrounding the tumor (30). Most MMPs are destined for secretion into the extracellular milieu. In contrast to this, MMP-14 is a membrane type-MMP (31). It is a critical protein in cancer invasion and metastasis. Invasion through collagen networks and subsequent collagenolysis relies principally on MMP-14, not on secreted MMPs (32). The purpose of this study was to evaluate the effects of the chemotherapeutic agents carboplatin and imatinib (STI 571) in HNSCC culture.

Materials and methods

Cell lines and cell culture. The two HNSCC cell lines 11A and 14C (UMSCC 11A/14C) were obtained from Dr T.E. Carey (University of Michigan, MI, USA). They originate from human HNSCC of larynx (11A) and of the oral cavity (14C). The pl6 positive cell line CERV196 was provided by the CLS (Eppelheim, Germany).

Cell cultures were carried out at 37°C in a 5% CO₂ fully humidified atmosphere using Dulbecco’s modified minimum essential medium (DMEM) (Fisher Scientific Co., Pittsburgh, PA, USA) supplemented with 10% fetal calf serum (FCS) and antibiotics (Life Technologies Inc., Gaithersburg, MD, USA). Imatinib was provided by the manufacturer (Novartis). Imatinib and carboplatin (Medac, Wedel, Germany) were stored at 4°C and dissolved in sterile water at the time of use. HNSCC cell lines 11A/14C and the papilloma virus positive cervical cancer cell line CERV196 were incubated with different concentrations of imatinib (18 or 30 µmol/ml) or carboplatin (3 or 7.5 µmol/ml) from 48 h to 10 days. After the defined incubation time the supernatants were collected in sterile tubes and stored at -20°C until further analysis.

MMP-ELISA principle. MMP-2 and MMP-14 concentrations were determined by ELISA technique (DMP2F0. R&D Systems, Wiesbaden, Germany). The system used a solid-phase monoclonal antibody and further an enzyme-linked polyclonal antibody against MMP-2/-14. The specificity of anti-human antibodies used in the ELISA kit were examined by sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE) followed by further western blotting. Following the manufacturer’s instructions, each assay measured 100 µl of supernatant. All calibrations and analyses were carried out in duplicate. Optical density was determined using a micro-plate reader at a wavelength of 450 nm. Wavelength correction was set to 540 nm. Concentrations of MMP-2 and -14 were reported as ng/ml. After 48 and 72 h, 5, 8 and 10 days of incubation with 3 or 7.5 µmol carboplatin, 18 or 30 µmol imatinib the expression of MMP-2 and MMP-14 in the supernatants of the incubated cultures and untreated cultures was determined.

Characterisation of cell lines (immunohistochemistry). Immunohistochemical studies were performed using a monoclonal mouse anti-human antibody directed against MMP-2/-14 (ab7032/73879, Abcam, Cambridge, UK). Immunostaining was performed using the streptavidin horseradish method. The cells were cultured on Nunc 8-well chambers overnight before immunohistochemistry. When confluent, cells underwent fixation with acetone and alcohol (2:1). Cells were incubated with primary antibody solution for 30 min at room temperature, using a working solution of antibody to cells of 1:300. Slides...
were rinsed three times in buffer (Buffer Kit, Dako, Hamburg, Germany). Furthermore, cells were incubated in sheep serum. Immuno- reaction was demonstrated with the monoclonal mouse anti-human antibody MMP-2/-14 (ab7032/ab73879, Abcam). Incubation was followed by addition of a specific biotinylated secondary antibody and a streptavidin-biotin horseradish peroxidase complex (Amersham, Freiburg, Germany), then peroxidase reaction was performed using aminoethylcarbazol as chromagen. After blocking of endogenous peroxidase, cells were washed several times. Finally sections received a counterstaining with Harris’ hematoxylin for 30 sec. This procedure was followed by coverslipping. Negative controls were used with the reagents except the primary antibody. The results of the immunohistochemically observed rates of expression were determined semi-quantitatively. The staining intensity was: strong reactivity, >80% of the cells were positive; moderate reactivity, 50-80% of the cells stained positive; weak reactivity, <50% of the cells were positive, and no positive cells.

Statistical analysis. Statistical analysis was performed in cooperation with Dr C. Weiss, Institute of Biomathematics, Faculty of Medicine, Mannheim. The differences in MMP expression between incubated cultures and control cultures were analyzed using the Dunnet’s test being part of GLM procedure. All treated groups were measured as mean (in Figs. 1-5) and compared to the negative control. A P-value ≤0.05 was considered statistically significant. In Figs. 1-5 significant data are marked as follows: *P<0.05; **P<0.005; ***P<0.001; ****P<0.0006.

Results

Effect of carboplatin and imatinib on SCC cell lines. To analyze the effects of imatinib and carboplatin on HNSCC cell lines and the HPV-positive cell line CERV196, we added increasing concentrations of the two chemotherapeutical agents imatinib (18 and 30 µmol) and carboplatin (3 and 7.5 µmol) to cell cultures. In order to determine MMP-2 as well as MMP-14 expression in the supernatant of the cell lines, ELISA analysis was carried out at 2, 3, 5, 8 and 10 days after the start of incubation.

In all cell lines treated a downregulation of MMP-2 was shown by incubation with imatinib. A significant effect could be measured after 2 days in HNSCC 11A cell line and on day 3 in HNSCC 14C and CERV196. All treated groups were measured as mean (and compared to the negative control after 3 days of incubation with imatinib (e.g., 18 µmol/ml): cont11A=0.663±0.086 ng/ml, m11A=0.378±0.10 ng/ml, P11A=0.018; cont14C=0.746±0.069 ng/ml, m14C=0.415±0.126 ng/ml, P14C=0.003; contCERV196=0.421±0.018 ng/ml, mCERV196=0.224±0.032 ng/ml, P<0.007. A significant downregulation of MMP-2 could not be shown by treatment of cell lines with carboplatin.

In HNSCC 11A a time-dependence of MMP-2 downregulation by imatinib was revealed (e.g., 30 µmol/ml): cont11A=0.516±0.098 ng/ml; cont2=0.601±0.109 ng/ml; m3x=0.344±0.118 ng/ml, P3x=0.004; cont11A=0.663±0.086 ng/ml, m11A=0.385±0.077 ng/ml, P11A=0.015; cont14C=0.727±0.15 ng/ml, m14C=0.408±0.09 ng/ml, P14C=0.015; contCERV196=0.956±0.125 ng/ml, mCERV196=0.369±0.062 ng/ml, P<0.005; contCERV196=0.794±0.015 ng/ml, mCERV196=0.264±0.146 ng/ml, P<0.0006 (***P<0.0006).

In HNSCC 11A a time-dependence of MMP-2 downregulation by carboplatin was shown (e.g., 30 µmol/ml): cont11A=0.516±0.098 ng/ml; cont2=0.601±0.108 ng/ml, m2=0.344±0.118 ng/ml, P2=0.004; cont11A=0.663±0.086 ng/ml, m11A=0.385±0.077 ng/ml, P11A=0.015; cont14C=0.727±0.15 ng/ml, m14C=0.408±0.09 ng/ml, P14C=0.015; contCERV196=0.956±0.125 ng/ml, mCERV196=0.369±0.062 ng/ml, P<0.005; contCERV196=0.794±0.015 ng/ml, mCERV196=0.264±0.146 ng/ml, P<0.0006 (***P<0.0006).
Strikingly, the downregulating effect of imatinib could only be measured significantly on day 3 in p16 positive CERV196 (P=0.007; *P<0.05).

In HNSCC cell lines 11A and 14C, we observed a 2-fold higher expression of MMP-2 compared to p16-positive CERV196 (e.g., negative control, 0d: m$_{11A}$=0.516±0.098 ng/ml; m$_{14C}$=0.735±0.133 ng/ml; m$_{CERV196}$=0.376±0.067 ng/ml).

The significant suppression of MMP-14 expression could be measured in all cell lines treated with imatinib. However, the effect on CERV196 was less striking than in HNSCC cell lines 11A and 14C. A significant downregulation of MMP-14 could only be observed after 8 days in CERV196 (e.g., 18 µmol, day 3): cont$_{0d}$=1112.77±177.06 pg/ml, m$_{11A}$=855.87±69.80 pg/ml, P$_{11A}$=0.019 (*P<0.05); cont$_{2d}$=2803.8±113.24 pg/ml, m$_{14C}$=1788±144.88 pg/ml, P$_{14C}$<0.0001 (**P\leq0.0006); cont$_{CERV196}$=1060±54.99 pg/ml, m$_{CERV196}$=864.48±34.08 pg/ml.

In UMSCC 14C a downregulation of MMP-14 was also observed after treatment with carboplatin (e.g., 3 µmol, 3d): cont$_{0d}$=2803.8±113.24 pg/ml, m$_{14C}$=2073.33±115.17 pg/ml, P=0.003.

Especially in HNSCC 14C a highly significant effect of imatinib on MMP-14 expression was revealed and observed from day 3 to 10 (e.g., 30 µmol): cont$_{0d}$=1509.93±145.39 pg/ml; cont$_{2d}$=1989.1±253.33 pg/ml; m$_{14C}$=1887±176.44 pg/ml; m$_{2d}$=2803.8±113.24 pg/ml; m$_{5d}$=1538±95.36 ng/ml; m$_{10d}$=1073.67±208.36 pg/ml, P$_{14C}$<0.0001; cont$_{5d}$=2181±695.05 pg/ml, m$_{10d}$=980±229.79 pg/ml, P$_{10d}$=0.0001 (**P\leq0.0006) (Fig. 5).

Immunohistochemistry. The immunohistochemical studies against MMP-14 showed decreased reactivity with rising...
concentrations of imatinib and with rising time of incubation from 48-240 h in HNSCC lines 11A and 14C. This effect of imatinib could not be shown for the p16-positive cell line CERV196 (Fig. 6). The effect of carboplatin on MMP expression in HNSCC lines was less striking compared to imatinib (Table I).

Discussion

The combination of chemo- and radiotherapy of advanced HNSCC was developed to improve the often poor prognosis in these malignancies. Concomitant chemoradiotherapy with cytotoxic chemotherapeutics has improved overall and 5-year survival rates of advanced HNSCC patients and also improved locoregional control rate. But new strategies and targeted therapy have been explored in the attempt to enhance survival rates in advanced HNSCC and especially unresectable HNSCC (33). Countless epigenetic and genetic events, including the aberrant expression and function of regulators of cell cycle, growth and signaling, motility, angiogenesis and apoptosis are involved in pathogenesis of HNSCC and thus might be plausible targets for therapy. Thus, recently intracellular signal transduction has come to special interest also in squamous cell carcinoma. Transmembrane protein tyrosine kinases (PTK) are fundamental elements of the signal transduction. In consequence, they might also be promising targets for cancer therapy. Imatinib (STI 571) was originally designed to inhibit the BCR-ABL tyrosine kinase in chronic myeloid leukaemia (34). In former studies imatinib also showed inhibitory impact on the PTK receptor c-kit and on its PTK activity (33,35). Thus, imatinib has antitumor activities towards adenocarcinoma, e.g., colon cancer, and its antitumoral effects have also been shown in non-small cell lung cancer and HNSCC (36,37). In consequence, we set up the above study to analyze its potency in HNSCC cell lines to confirm these effects. The concentrations of imatinib used in our experiments were within the range that is achieved in a clinical trial (37). Similarly, the concentrations of carboplatin used in this study are clinically relevant. As current phase II clinical trials in aerodigestive tumors were undertaken to evaluate the efficacy of imatinib mesylate-docetaxel, which hypothesized that imatinib mesylate would inhibit platelet-derived growth factor receptor (PDGFR) on pericytes and increase docetaxel uptake, showed partial poor outcome in HNSCC patients (37) we find it very important to put emphasis on cell culture experiments. Imatinib can be administered orally to the patients and comparatively limited.

Table I. Immunoreactivity against MMP-14 in HNSCC 11A, 14C and CERV196.

<table>
<thead>
<tr>
<th>Immunostaining index</th>
<th>48 h</th>
<th>72 h</th>
<th>120 h</th>
<th>240 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HNSCC 11A +++ (3/3)</td>
<td>HNSCC 11A +++ (2/3)</td>
<td>HNSCC 11A ++ (2/3)</td>
<td>HNSCC 11A +++ (3/3)</td>
<td></td>
</tr>
<tr>
<td>HNSCC 14C +++ (3/3)</td>
<td>HNSCC 14C ++ (2/3)</td>
<td>HNSCC 14C +++ (3/3)</td>
<td>HNSCC 14C +++ (2/3)</td>
<td></td>
</tr>
<tr>
<td>CERV196 ++ (3/3)</td>
<td>CERV196 ++ (3/3)</td>
<td>CERV196 +++ (3/3)</td>
<td>CERV196 ++ (2/3)</td>
<td></td>
</tr>
<tr>
<td>Carboplatin 3 µmol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HNSCC 11A ++ (1/3)</td>
<td>HNSCC 11A ++ (2/3)</td>
<td>HNSCC 11A +++ (2/3)</td>
<td>HNSCC 11A ++ (1/3)</td>
<td></td>
</tr>
<tr>
<td>HNSCC 14C ++ (2/3)</td>
<td>HNSCC 14C +++ (1/3)</td>
<td>HNSCC 14C ++ (2/3)</td>
<td>HNSCC 14C +++ (2/3)</td>
<td></td>
</tr>
<tr>
<td>CERV196 +++ (2/3)</td>
<td>CERV196 +++ (1/3)</td>
<td>CERV196 +++ (2/3)</td>
<td>CERV196 +++ (2/3)</td>
<td></td>
</tr>
<tr>
<td>Carboplatin 7.5 µmol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HNSCC 11A +++ (2/3)</td>
<td>HNSCC 11A ++ (2/3)</td>
<td>HNSCC 11A ++ (2/3)</td>
<td>HNSCC 11A ++ (2/3)</td>
<td></td>
</tr>
<tr>
<td>HNSCC 14C ++ (2/3)</td>
<td>HNSCC 14C +++ (2/3)</td>
<td>HNSCC 14C ++ (2/3)</td>
<td>HNSCC 14C +++ (2/3)</td>
<td></td>
</tr>
<tr>
<td>CERV196 +++(3/3)</td>
<td>CERV196 +++ (3/3)</td>
<td>CERV196 +++ (2/3)</td>
<td>CERV196 +++ (2/3)</td>
<td></td>
</tr>
<tr>
<td>Imatinib 18 µmol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HNSCC 11A ++ (2/3)</td>
<td>HNSCC 11A + (2/3)</td>
<td>HNSCC 11A + (2/3)</td>
<td>HNSCC 11A + (2/3)</td>
<td></td>
</tr>
<tr>
<td>HNSCC 14C ++ (1/3)</td>
<td>HNSCC 14C ++ (1/3)</td>
<td>HNSCC 14C ++ (2/3)</td>
<td>HNSCC 14C ++ (2/3)</td>
<td></td>
</tr>
<tr>
<td>CERV196 +++ (3/3)</td>
<td>CERV196</td>
<td>CERV196 ++ (2/3)</td>
<td>CERV196 ++ (2/3)</td>
<td></td>
</tr>
<tr>
<td>Imatinib 30 µmol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HNSCC 11A ++ (2/3)</td>
<td>HNSCC 11A 0 (1/3)</td>
<td>HNSCC 11A + (1/3)</td>
<td>HNSCC 11A 0 (1/3)</td>
<td></td>
</tr>
<tr>
<td>HNSCC 14C + (2/3)</td>
<td>HNSCC 14C + (2/3)</td>
<td>HNSCC 14C + (2/3)</td>
<td>HNSCC 14C + (2/3)</td>
<td></td>
</tr>
<tr>
<td>CERV196 ++ (2/3)</td>
<td>CERV196 ++ (1/3)</td>
<td>CERV196 ++ (2/3)</td>
<td>CERV196 + (1/3)</td>
<td></td>
</tr>
</tbody>
</table>

0, no positive cells; +, weak immunostaining; ++, moderate immunostaining; ++++, strong immunostaining. (x/3), number of positive cell lines out of the HNSCC lines 14C, 11A and CERV196.
toxic side effects have been reported (38). It is possible that the main part of toxicity was contributed by docetaxel in the above mentioned trial.

Furthermore, the role of MMPs in tumor progress, invasion and metastasis has already been extensively studied (33,39,40). Hereby MMPs are responsible for the alteration of basement membrane collagens (41). In our experiments we illustrated a remarkable expression of MMP-2 and -14 in all cell lines tested (HNSCC 11A, 14C and CERV196). The expression of MMPs was significantly reduced after incubation with imatinib in different concentrations in HNSCC cell lines. This effect could also be observed in p16-positive CERV196, even though the effect was moderate compared to HNSCC lines 11A and 14C. Epidemiological and experimental studies have provided evidence that human papillomavirus (HPV) infection plays an important role in the development of e.g., uterine cervical neoplasms (42) or neoplasms of the head and neck (43). In the past emphasis has been put on two of the enzymes, MMP-2 and MMP-9 which have been correlated with the progress of tumor cell invasion and metastasis in human cancers, including uterine neoplasms (42). They are potent gelatinases and have been correlated with the processes of tumor cell invasion and metastasis (42). MMP-2 (gelatinase A) (44) and MMP-9 (gelatinase B) have been found in large quantities in cancer tissues (41,45). Overexpression of MMP-2 and -9 has been observed in pre-cancer and cancer lesions of the cervical uterine (42). During the last decades progress in research on enzyme activities showed the potential significance of MMP-2 and MMP-9 in the progress of cervical uterine cancer suggesting their prognostic value (42,46,47). MMP-2 expression was suppressed in the presence of imatinib in our cell cultures. MMP-2 seems to play a key role in degradation of basement membranes, which facilitates invasion and metastasis of tumor cells. The overexpression of MMP-2 is associated with local invasion of the tumor, lymph node metastasis and a poor survival rate (48). Fibroblasts secrete several growth factors, such as SCF, HGF, IGF and TGF-β (49,50). A proteolytic cleavage by MMPs might activate these growth factors, which leads to HNSCC cell growth. TGF-β and IGF are factors known to increase the membrane MMP-2 expression in smooth muscle (51). HGF might enhance the invasiveness of HNSCC by the induction of Ets-related E1AF transcription factor genes, whose products again activate MMP genes (52). Furthermore, HGF may foster the tumor invasion progress by inducing a loss of β-catenin/ cadherin-mediated cell-cell adhesion (53). Recent studies revealed an alteration of these cell-cell adhesion proteins in HNSCC by suindac sulfone (54). Thus, a model summarizing the interactions between HNSCC cells and stromal fibroblasts may contain the secretion of growth factors by fibroblasts that foster the expression of MMPs.

MMP-14, a membrane-type-MMP, is a critical protein in cancer invasion and metastasis (31). Invasion through collagen networks and subsequent collagenolysis relies principally on MMP-14, not on secreted MMPs (32). It has now been shown, that MMP-14 interacts with CD44, a membrane-associated glycoprotein, which has also been shown to be a cancer stem cell marker in HNSCC (31,55,56). By this interaction a migratory front is created, which enables the cells to migrate through the tissue in the direction led by MMP-14 (31). To minimize the remodeling of extracellular matrix necessary for tissue invasion, MMP-14 is localized at the leading edge of the cell, the invadopodia (31,57).

In conclusion, we have shown that HNSCC cell lines and the p16-positive cell line CERV196 express MMP-2 and -14. We demonstrated that imatinib alone and as a combination with carboplatin can be very effective in downregulation of MMP-expression especially in HNSCC. Therefore, imatinib may exert in part its inhibitory effect on tumor cell growth via the blockage of the signal transduction of PTK receptor (33). Because of the low toxicity of imatinib alone in humans, further studies should be considered to further explore its potency in antitumoral therapy in HNSCC.

Acknowledgements

The authors would like to thank Petra Prohaska for excellent technical assistance, Dr C. Weiss for her assistance in statistical analysis, and Novartis Pharma (Basel, Switzerland) for kindly providing imatinib.

References

A significant elevation of
increased expression and
36. Popow-Wozniak A, Wozniakowska A, Kaczmarek L, Malicka-
35. Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA and
34. Druker BJ and Lydon NB: Lessons learned from the develop-
33. Schultz JD, Rotunno S, Erben P,
26. Buchdunger E, Zimmermann J, Mett H,
25. Lydon NB and Druker BJ: Lessons learned from the develop-
21. Crosby RA, Diclemente RJ, Salazar LF, Nash R, Younge S and
17. Chaturvedi AK, Engels EA, Pfeiffer RM,
15. Attner P, Du J, Nasman A, and
16. Romanitan M, Nasman A, Ramqvist T,
178
17. Kreimer AR and Chaturvedi AK: HPV-associated oropharyngeal
cancers - are they preventable? Cancer Prev Rev 4: 1346-1349,
34. Druker BJ and Lydon NB: Lessons learned from the develop-
ment of an abl tyrosine kinase inhibitor for chronic myelogenous
35. Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA and
Zugler AJ: Inhibition of c-kit receptor tyrosine kinase activity by
STI 571, a selective tyrosine kinase inhibitor. Blood 96: 925-932,
2000.
36. Popow-Wozniak A, Wozniakowska A, Kaczmarek L, Malicka-
Blaszkiewicz M and Nowak D: Apoptotic effect of imatinib on
human colon adenocarcinoma cells: influence on actin cytoske-
lon organization and cell migration. Eur J Pharmacol 667:
67-73, 2011.
mesylate and docetaxel in patients with metastatic non-small
cell lung cancer and head and neck squamous cell carcinoma. J
mutations of c-kit in human gastrointestinal stromal tumors.
their inhibitors: influence on tumor invasiveness and metastasis
formation in head and neck squamous cell carcinomas. Head
40. Moscatelli D and Rifkin DB: Membrane and matrix localization
of proteinases: a common theme in tumor cell invasion and
41. Liotta LA and Stetler-Stevenson WG: Tumor invasion and metas-
tasis: an imbalance of positive and negative regulation. Cancer
role of matrix metalloproteinases (review). Int J Oncol 34:
897-903, 2009.
43. Gondikvar SM, Parikh RV, Gadball AR, et al: Involvement of
viral factors with head and neck cancers. Oral Oncol: Nov 9,
2011 (Epub ahead of print).
44. Fernandes T, de Angelo-Andrade LA, Morais SS, et al: Stromal
cells play a role in cervical cancer progression mediated by
45. Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG
and Quaranta V: Induction of cell migration by matrix metallo-
46. Sheu BC, Lien HC, Ho HN, et al: Increased expression and
activation of gelatinolytic matrix metalloproteinases is associ-
ated with the progression and recurrence of human cervical
plasma level of matrix metalloproteinase-9 in patients with
high-grade intraepithelial neoplasia and early squamous cell
48. Seiki M: Membrane-type 1 matrix metalloproteinase: a key
49. Mook OR, Frederiks WM and van Noorden CJ: The role of gela-
tinases in colorectal cancer progression and metastasis. Biochim
and c-kit signaling in regulation of fetal intestinal epithelial cell
51. Risinger GM Jr, Hunt TS, Updike DL, Bullen EC and
Howard EW: Matrix metalloproteinase-2 expression by vascular
smooth muscle cells is mediated by both stimulatory and
inhibitory signals in response to growth factors. J Biol Chem 281:
factor upregulates E1AF which induces oral squamous cell
carcinoma cell invasion by activating matrix metalloproteinase
53. Hiscox S and Jiang WG: Hepatocyte growth factor/scatter factor
disrupts epithelial tumour cell-cell adhesion: involvement of
54. Sauter A, Soulsby H, Hormann K and Naim R: Sulindac sulfone
inhibits growth factor receptor as a target for vascular endothelial growth
factor-mediated anti-angiogenetic therapy in head and neck squamous cell
55. Faber A, Barth C, Hormann K, et al: CD44 as a stem cell marker
versus membrane-anchored collagenases: relative roles in
fibroblast- and collagenolytic invasion and growth. J Biol Chem
56. Mori H, Tomari T, Koshikawa N, et al: Uterine cervical carcinoma:
activation of gelatinolytic matrix metalloproteinases is associ-
ated with the progression and recurrence of human cervical
57. Araya VV, Zhang Y, Seiller-Moiseiwitsch F, Yamada KM and
Mueller SC: Dynamic interactions of cortactin and membrane
type 1 matrix metalloproteinase at invadopodia: defining the
stages of invadopodia formation and function. Cancer Res 66: