Wogonin potentiates cisplatin-induced cancer cell apoptosis through accumulation of intracellular reactive oxygen species

FAN HE*, QIONG WANG*, XUE-LIAN ZHENG, JIA-QI YAN, LAN YANG, HONG SUN, LI-NA HU, YONG LIN and XIA WANG

Laboratory of Molecular and Translational Medicine, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, P.R. China

Received January 19, 2012; Accepted March 26, 2012

DOI: 10.3892/or.2012.1841

Abstract. Chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic. The combination of cisplatin with other agents has been recognized as a promising strategy to overcome cisplatin resistance. Previous studies have shown that wogonin (5,7-dihydroxy-8-methoxyflavone), a flavonoid isolated from the root of the medicinal herb Scutellaria baicalensis Georgi, sensitizes cancer cells to chemotherapeutics such as etoposide, adriamycin, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and TNF. However, the effect of wogonin on cisplatin-induced cytotoxicity has not been previously reported. In this study, the non-small cell lung cancer cell line A549 and the cervical cancer cell line HeLa were treated with wogonin or cisplatin individually or in combination. It was found for the first time that wogonin is able to sensitize cisplatin-induced apoptosis in both A549 cells and HeLa cells as indicated by the potentiation of activation of caspase-3, and cleavage of the caspase-3 substrate PARP in wogonin and cisplatin co-treated cells. Importantly, wogonin robustly induced H$_2$O$_2$ accumulation in these cells, which substantially contributes to the sensitization of cisplatin cytotoxicity by wogonin, and cisplatin co-treatment. The results from this study provide important new evidence supporting the potential use of wogonin as a cisplatin sensitizer for cancer therapy.

Introduction

Cisplatin (cis-diaminedichloroplatinum, DDP) is one of the most potent and widely used chemotherapeutic agents for treatment of a wide variety of solid tumors in clinic. By interacting with DNA to form intra- and inter-strand adducts to disrupt DNA replication and transcription, cisplatin activates several cellular signal pathways including those involving ATR, p53, p73 and MAPK, which results in apoptosis (1). However, cisplatin-induced apoptotic cell death can be attenuated, and chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy. The molecular mechanisms responsible for cisplatin resistance appear to be multifactorial. Reduced drug uptake, increased drug inactivation and increased DNA repair would limit the extent of cisplatin-induced DNA damage. Moreover, mechanisms that inhibit propagation of the DNA damage signal to the apoptotic machinery have also been proposed, which include loss of damage recognition, loss of p53 function, overexpression of HER-2/neu, activation of the PI3-K/Akt pathway, overexpression of antiapoptotic Bcl-2, and defects in apoptotic pathways (2,3). Therefore, combination of cisplatin with other agents that could modulate DNA damage and related signal pathways is a promising strategy to overcome cisplatin resistance.

Because they are generally safe to humans, naturally occurring compounds from diets or medicinal plants are good candidates for increasing the cisplatin anticancer activity. Wogonin (5,7-dihydroxy-8-methoxyflavone) is a flavonoid isolated from the root of the medicinal herb Scutellaria baicalensis Georgi, which has been shown to exert antioxidant, anti-inflammatory, antiviral and anticancer activities in vitro as well as in vivo (4-7). Importantly, wogonin showed no significant toxicity to normal peripheral blood T cells (8), and was able to reduce etoposide-induced apoptotic cell death in normal cells such as bone marrow cells and thymocytes (9). Therefore, wogonin is a good potential sensitizer for cisplatin anticancer activity. Wogonin was found to potentiate etoposide-induced apoptosis in cancer cells through inhibition of P-glycoprotein (10), to overcome IL-6-induced adriamycin...
resistance through suppressing IL-6-mediated aldo-keto reductase (AKR) superfamily member dihydrodiol dehydrogenases (AKR1C1/1C2) overexpression in human non-small lung cancer cells (11), and to enhance the cytotoxicity of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) through upregulating p53 and PUMA (12). Recently, we found that wogonin sensitizes cancer cells to tumor necrosis factor α (TNF-α)-induced apoptosis by blocking TNF-induced NF-κB activation (13). However, the effect of wogonin on the anticancer activity of cisplatin, one of the most widely used chemotherapeutics in clinic, has not been investigated. In this study, we treated the non-small cell lung cancer cell line A549 and the cervical cancer cell line HeLa with the combination of wogonin and cisplatin and found for the first time that wogonin potently sensitizes cisplatin-induced cancer cell apoptosis through triggering intracellular reactive oxygen species (ROS) accumulation, which added important new evidence supporting the potential use of wogonin as adjuvant of cisplatin.

Materials and methods

Reagents. Wogonin was from National Institute of the Control Pharmaceutical and Biological Products (Beijing, China). Cisplatin, butylated hydroxyanisole (BHA) and N-acetyl-L-cysteine (NAC) were purchased from Sigma (St. Louis, MO). Z-VAD-FMK was from Calbiochem (La Jolla, CA). ROS-sensitive fluorescent dye 5- (and-6)-chloromethyl-2',7'- dichlorodihydrofluorescein diacetate acetyl ester (CM-H_2DCFDA) and dihydroethidium (DHE) were purchased from Molecular Probes (Eugene, OR). Antibodies against active caspase-3, poly (ADP-ribose) polymerase (PARP) were from BD Bioscience (San Diego, CA). Anti-β-actin antibody was from Protein Tech (Chicago, IL).

Cell culture and cell death assay. A549 (a non-small cell lung cancer cell line) and HeLa (a cervical cancer cell line) were from American Type Culture Collection (ATCC, Manassas, VA) and grown in RPMI-1640 supplemented with 10% fetal bovine serum (Hyclone, Logan, UT), 100 U/ml penicillin and 100 µg/ml streptomycin. The cultured cells were kept in a 37°C humidified incubator with 5% CO_2. For cell death assay, cells were seeded in 96-well plates and after overnight culture were then treated as indicated in each figure legend. Thirty minutes before collecting cells, H_2O_2-sensitive fluorescent dye CM-H_2DCFDA (5 µM) or superoxide-sensitive dye DHE (5 µM) was added. ROS were detected by flow cytometry (Beckman Coulter, Inc., Brea, CA). Cells that are in early apoptosis are Annexin V-FITC positive and PI negative; and cells that are in late apoptosis or already dead are both FITC Annexin V and PI positive.

Detection of ROS. Cells were seeded in 12-well plates and after overnight culture were then treated as indicated in each figure legend. Thirty minutes before collecting cells, H_2O_2-sensitive fluorescent dye CM-H_2DCFDA (5 µM) or superoxide-sensitive dye DHE (5 µM) was added. ROS were detected by flow cytometry (Beckman Coulter, Inc.) as reported previously (15).

Statistical analysis. All numerical data are expressed as mean ± standard deviation (SD). Statistical significance was examined by Student’s paired-sample t-test using the SPSS statistics software package (IBM SPSS, Chicago, IL) and P<0.05 was used for significance.

Results

Wogonin enhances cisplatin-induced cell death in cancer cells. Aiming to overcome chemoresistance to cisplatin in cancer cells, we first investigated whether wogonin is able to enhance the anticancer activity of cisplatin. We treated the A549 cells with 10 µM of wogonin, 10 µM of cisplatin or both for 60 h and cell death was observed microscopically. As shown in the representative images (Fig. 1A), while cisplatin or wogonin caused limited cell death, co-treatment of these agents resulted in significantly enhanced cytotoxicity. To more quantitatively measure cell death, A549 cells were treated with increasing concentrations of wogonin (5-20 µM) and a fixed concentration of cisplatin (7.5 µM) and cell death was detected by LDH release assay. The results showed that while cisplatin alone caused about 25% cell death in A549 cells, wogonin synergistically sensitized A549 cells to cisplatin-induced cell death in a dose-dependent manner (Fig. 1B). The synergism that killed about 80% of cells was detected at the highest dose of wogonin (20 µM), a concentration of wogonin alone that only caused moderate cell death (~12%). Conversely, a similar dose-dependent potentiation of cytotoxicity was detected when increasing concentrations of cisplatin with a fixed wogonin dose was used (Fig. 1C). The sensitization of cisplatin’s anticancer activity was further validated in the cervical cancer cell line HeLa. A similar dose-dependent synergism either with fixed concentration of wogonin or with fixed concentration of cisplatin was observed (Fig. 1D and E), suggesting wogonin is able to sensitize cancer cells to cisplatin-induced cytotoxicity.

Wogonin enhances cisplatin-induced cancer cell apoptosis. We next investigated whether wogonin potentiates cisplatin-induced cell death through enhancing apoptosis. HeLa cells were treated with wogonin, cisplatin alone or both. The cells were stained with Annexin V-FITC and PI, apoptosis was analyzed by flow cytometry. As shown in Fig. 2A, both

Apoptosis analysis by flow cytometry. Apoptosis was detected by flow cytometric analysis using an Annexin V-FITC Apoptosis Detection kit (Nanjing KeyGen Biotech, Nanjing, China). Cells were treated as indicated in the figure legend, and then were double stained with Annexin V-FITC and propidium iodide (PI) following manufacturer's instruction. The stained cells were analyzed by flow cytometry (Beckman Coulter, Inc., Brea, CA). Cells that are in early apoptosis are Annexin V-FITC positive and PI negative; and cells that are in late apoptosis or already dead are both FITC Annexin V and PI positive.

Figure legend and cell lysates were prepared by lysing cells as described previously (14). All the experiments were repeated 3-5 times and the average is shown in each figure.
The activated caspase cascade was barely detected in wogonin or cisplatin alone treated cells, whereas the activation of caspase-3 and cleavage of caspase-3 substrate PARP were significantly enhanced in cisplatin and wogonin co-treated A549 cells and HeLa cells (Fig. 2B). The pan-caspase inhibitor Z-VAD-FMK effectively suppressed the synergistic cytotoxicity induced by wogonin and cisplatin co-treatment (Fig. 3), further confirming that the sensitization to cisplatin by wogonin is through enhancement of apoptosis in cancer cells.

Wogonin-induced intracellular H_2O_2 accumulation contributes to the synergistic cytotoxicity induced by wogonin plus cisplatin. It has been well established that ROS, a group of reactive oxygen-containing species including superoxide, hydrogen peroxide (H_2O_2) and hydroxyl radical, are important signaling mediators for cell death pathways. Our previous work has demonstrated that wogonin induces intracellular accumulation of H_2O_2 in cancer cells, which contributes substantially to the synergistic cytotoxicity induced by wogonin plus TNF (13). The role of ROS in wogonin plus cisplatin-induced synergistic cytotoxicity was thus investigated. Cells were treated with wogonin, cisplatin or both, stained with ROS-specific dyes, CM-H$_2$DCFDA that is specific for hydrogen peroxide (H_2O_2) or DHE that is specific for superoxide, and then analyzed by flow cytometry. As expected, wogonin induced strong intracellular H_2O_2 accumulation in both A549 cells and HeLa cells (Fig. 4A). The treatment with wogonin plus cisplatin showed similar trend and even more striking extent of H_2O_2 induction as treated by the wogonin alone. On the contrary, wogonin and cisplatin had marginal effect on cellular superoxide level in A549 and HeLa cells (Fig. 4B), which is consistent with our previous results (13). Then, we treated cells with ROS scavengers BHA or NAC to remove H_2O_2. As shown in Fig. 5A, these two scavengers effectively suppressed the synergistic cytotoxicity induced by wogonin and cisplatin co-treatment in both A549 and HeLa cells, which is consistent with our previous results (13). Then, we treated cells with both ROS scavengers BHA or NAC to remove H_2O_2. As shown in Fig. 5A, these two scavengers effectively suppressed the synergistic cytotoxicity induced by wogonin and cisplatin co-treatment in both A549 and HeLa cells, which is consistent with our previous results (13). Then, we treated cells with both ROS scavengers BHA or NAC to remove H_2O_2. As shown in Fig. 5A, these two scavengers effectively suppressed the synergistic cytotoxicity induced by wogonin and cisplatin co-treatment in both A549 and HeLa cells, which is consistent with our previous results (13). Then, we treated cells with both ROS scavengers BHA or NAC to remove H_2O_2. As shown in Fig. 5A, these two scavengers effectively suppressed the synergistic cytotoxicity induced by wogonin and cisplatin co-treatment in both A549 and HeLa cells, which is consistent with our previous results (13).
Discussion

In the current study, we demonstrate for the first time that wogonin is able to sensitize cisplatin-induced apoptosis through a ROS-dependent mechanism in the non-small cell lung cancer cell line A549 and the cervical cancer cell line HeLa. First, combination treatment of these two cell lines with wogonin and cisplatin showed synergistic cytotoxicity in a dose-dependent manner. Second, apoptosis was significantly enhanced in wogonin and cisplatin co-treated cancer cells, which was indicated by the potentiation of activation of caspase-3 and cleavage of the caspase-3 substrate PARP in co-treated cells. Third, wogonin robustly induced intracellular H$_2$O$_2$ accumulation in cancer cells, which contributed to the wogonin anticancer activity (8,12,13,16). We also found that wogonin induces H$_2$O$_2$ through suppression of catalase activity in cancer cells (13). Interestingly, wogonin induces marginal H$_2$O$_2$ accumulation in normal peripheral T cells and

Figure 3. Caspase inhibitor suppresses synergistic cytotoxicity in wogonin and cisplatin co-treated cells. A549 cells (A) and HeLa cells (B) were pretreated with Z-VAD-FMK (20 µM) for 30 min or remained untreated and then treated with 10 µM wogonin or 7.5 µM cisplatin individually or both for another 72 h. Cell death was measured as described in Fig. 1B. **P<0.01.

Figure 4. Wogonin induces intracellular H$_2$O$_2$ accumulation in cancer cells. A549 cells and HeLa cells were treated with 10 µM wogonin or 7.5 µM cisplatin or both for 60 min. CM-H$_2$DCFDA (5 µM) (A) or DHE (5 µM) (B) was added 30 min before collecting cells. The fluorescent intensities were analyzed by flow cytometry. Untreated cells with CM-H$_2$DCFDA or DHE staining were used as a negative control. x-axis, fluorescent intensity showing the extent of CM-H$_2$DCFDA or DHE oxidation; y-axis, cell number.

Figure 5. Intracellular H$_2$O$_2$ accumulation contributes to the synergistic cytotoxicity induced by wogonin plus cisplatin in cancer cells. (A) A549 cells and HeLa cells were pretreated with BHA (100 µM) or NAC (1 mM) for 30 min or remained untreated and then treated with 10 µM wogonin or 7.5 µM cisplatin or both for 72 h. Cell death was measured as described in Fig. 1B. (B) A549 cells were pretreated with BHA (100 µM) or NAC (1 mM) for 30 min or remained untreated and then cotreated with 10 µM wogonin and 7.5 µM cisplatin for another 60 min. Cells were stained with CM-H$_2$DCFDA 30 min before collecting cells and then analyzed by flow cytometer.
immortalized normal bronchial epithelial cells, which may explain the selective cytotoxicity of wogonin on malignant cells. Indeed, the pro-oxidant activity of other flavonoids such as quercetin and luteolin has also been shown by increasing number of reports (15,17,18). It is believed that antioxidant and pro-oxidants behavior of flavonoids may depend on the structure of flavonoids, the source of the free radicals, and the context and microenvironment of the cell such as the presence and concentration of Fe and Cu ions (19,20).

The pharmacological mechanisms of cisplatin and etoposide are apparently different. Etoposide prevents re-liquidation of the DNA strands by forming a ternary complex with DNA and the topoisomerase II enzyme, thus to cause errors in DNA synthesis and promote apoptosis of cancer cells (21). Cisplatin disrupts DNA function and induces apoptosis by interacting with DNA to form DNA adducts. It is noteworthy that wogonin is able to sensitize cancer cells to apoptosis induced by both etoposide and cisplatin, two widely used frontline chemotherapeutics. Previously, the sensitizing effect of wogonin on etoposide-induced apoptosis in cancer cells was reported to involve inhibition of P-glycoprotein (10). Whereas the results from this study strongly suggest that intracellular H₂O₂ accumulation contributes substantially to the enhanced apoptosis observed in wogonin and cisplatin co-treated cancer cells, although other mechanisms are not excluded. ROS are important modulator of cellular signaling and can cause DNA-damage directly. The underlying molecular mechanisms by which wogonin-induced H₂O₂ sensitized cisplatin-induced apoptosis are likely multifactorial and worthy further study. One possible mechanism may involve H₂O₂ mediated-down-regulation of Bcl-2 protein through dephosphorylation and ubiquitination of the protein, which facilitates its degradation by proteasome (22,23). It is also possible that H₂O₂ oxidizes important cellular components such as DNA to trigger DNA damage-mediated apoptosis (24). Nevertheless, our results clearly suggest that wogonin could be used as a cisplatin sensitizer for cancer therapy.

Acknowledgements

This study was supported in part by grant 81172111 from National Natural Science Foundation of China, and also partly supported by grant 2010JQ0012 from the Young Scientist Fund of Science and Technology Department of Sichuan Province, China.

References