Emodin induces Panc-1 cell apoptosis via declining the mitochondrial membrane potential

JIN-XIANG LIU1, JIAN-HONG ZHANG1*, HONG-HAI LI1*, FU-JI LAI1, KANG-JIE CHEN2, HUI CHEN1, JIANG LUO1, HONG-CHUN GUO1, ZHAO-HONG WANG1 and SHENG-ZHANG LIN1,2

1Department of Hepatobiliary-Pancreatic Surgery, The Second Affiliated Hospital of Wenzhou Medical College, Wenzhou 325027; 2Department of Hepatobiliary-Pancreatic Surgery, First Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou 310003, P.R. China

Received June 13, 2012; Accepted July 12, 2012

DOI: 10.3892/or.2012.2042

Abstract. In this study, we investigated the apoptotic effect of emodin on human pancreatic cancer cell line Panc-1 in vitro and in vivo as well as the possible mechanisms involved. In vitro, human pancreatic cancer cell line Panc-1 was exposed to varying concentrations of emodin (0, 10, 20, 40 or 80 µmol/l). Then the mitochondrial membrane potential (MMP) was analyzed by JC-1 staining, cell apoptosis was analyzed by flow cytometry (FCM) and cell proliferation was analyzed by MTT. In vivo, nude mice orthotopically implanted were randomly divided into five groups to receive treatments by different doses of emodin: control group (normal saline 0.2 ml), E10 group (emodin 10 mg/kg), E20 group (emodin 20 mg/kg), E40 group (emodin 40 mg/kg) and E80 group (emodin 80 mg/kg). Each mouse was treated 5 times by intraperitoneal injection of emodin every 3 days. During the treatment, the feeding stuff curve was recorded. One week after the last treatment, we recorded the body weight and the maximum diameter of tumor in each group before the mice were sacrificed. Then the cell apoptosis of the tumor was tested by TUNEL assay. The results in vitro showed that the MMP of the cells declined and the apoptosis rate increased with the emodin concentration increasing and the cell proliferation of each group was inhibited in a dose- and time-dependent manner by emodin. The feeding stuff curve did not decline significantly in E10 group and the apoptosis rate of the tumor cells in this group was higher than the lower-dose groups. Taken together, our results demonstrate that emodin may induce the pancreatic cancer cell apoptosis via declining the MMP and a moderate dose of emodin improved the living state of the model mice.

Introduction

Pancreatic cancer is known for its high mortality rate. It is one of the most common causes of cancer mortality in developed countries (1). Due to the lack of effective-specific diagnosis methods, 26% of patients are in the middle-late stage when being diagnosed and only <10% of patients has a surgery opportunity, and even if the patients have the operation, they still need a series of comprehensive therapies, including chemotherapy (2). In the past decades, gemcitabine was preferred as the first-line drug for pancreatic cancer chemotherapy, but the benefits were very limited, so that new chemotherapy regimens for pancreatic cancer were explored and tested. But new chemotherapy results did not achieve considerable achievement and still could not replace gemcitabine as the gold standard for clinical treatment (3). Thus, it is extremely urgent to look for agents that have low toxicity and high-efﬁciency.

Emodin, 1,3,8-trihydroxy-6-methyl anthraquinone, is a monomer of Chinese Herb separated from Rhubarb Genera and Polygonum and Rhamnus and Folium Sennae. A number of studies show that emodin has a good effect on treating prostate (4), colorectal (5) and pancreatic cancer (6). In this study, we found that the Panc-1 cells' MMP declined and apoptosis rate increased dose-dependently with emodin treatment and the cell proliferation of each group was inhibited in a dose- and time-dependent manner. The feeding stuff curve did not decline signiﬁcantly in the group of the mice treated with emodin at the dose of 40 mg/kg and the apoptosis rate of the tumor cells was higher than the lower-dose groups. These results demonstrated that emodin could induce Panc-1 cells apoptosis via declining the MMP and a moderate dose of emodin improved the living state of the model mice.

Materials and methods

Chemicals and reagents. Emodin and MTT were purchased from Sigma-Aldrich (St. Louis, MO, USA). Emodin was dissolved in dimethyl sulfoxide (DMSO). The final concentration of DMSO used in vitro was <0.1% and that in vivo <1%. Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), penicillin-streptomycin, trypsin-EDTA were
obtained from Gibco-BRL (Invitrogen, Grand Island, NY, USA).

5,5′,6′,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolocarbocyanine iodide (JC-1) kit was purchased from Beyotime Biotechnology (Haimen, China). Annexin V-FITC cell apoptosis detection kit was purchased from Nanjing KeyGen Biotechnology Co., Ltd., (Nanjing, China). Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) kit was purchased from Roche Co. (Mannheim, Germany).

Cell line and cell culture. Human pancreatic cancer cell line Panc-1 was purchased from the American Type Culture Collection and cultured in DMEM with 10% FBS, 100 units/ml penicillin, and 100 µg/ml streptomycin at 37˚C under a humidified 5% CO₂ atmosphere. Cells were passaged at 80-90% confluence.

JC-1 analysis. Panc-1 cells were cultured in the medium with 0, 10, 20, 40 or 80 µmol/l emodin for 24 h. After that, Panc-1 cells were stained with 5 mg/ml JC-1 for 20 min at 37˚C in the dark. Then MMP depletion was observed under a fluorescence microscope.

FCM analysis. Panc-1 cells (4x10⁵) were seeded to each 6-well plate. When cells adhered to the culture flask wall, they were treated with 0, 10, 20, 40 or 80 µmol/l emodin for 24 h before collected for trypsin digestion. The cell apoptosis were then detected according to the instructions of Annexin V-FITC cell apoptosis detection kit and assessed by FCM (Becton-Dickinson, San Jose, CA, USA).

MTT analysis. Panc-1 cells were cultured in the medium with various concentrations of emodin (0, 10, 20, 40 or 80 µmol/l) for different time (12, 24, 48 or 72 h) and then the viability of Panc-1 cells was determined by MTT. Briefly, cells were plated at a density of 5x10⁴ cells/well in 96-well microtiter plates. After treatment, 20 µl of MTT solution (5 mg/ml in phosphate-buffered saline (PBS)) was added to each well and the plates were incubated. The supernatant was aspirated and the MTT formazan was dissolved in 150 µl of DMSO. The plates were mixed for 10 min on a gyrotary shaker and absorbance was measured with an ELISA reader (Bio-Tek ELx800, Winooski, VT, USA) at a wavelength of 490 nm. Experiment was repeated thrice. Inhibition rate (%) = [1 - (dosing absorbance - blank absorbance)/(control absorbance - blank absorbance)] x 100%.

Experimental animals. Male nude mice [4-5 weeks old, BALB/c (nu/nu)], weight 17-18 g) were purchased from Shanghai Cancer Institute for Tumor Implantation and maintained in a specific pathogen free (SPF) environment in the Animal Experiment Center of the Wenzhou Medical College. All animal studies were approved by the Animal Research and Ethics Committee of the Wenzhou Medical College.

Model establishment and experiment scheme. Suspensions consisting of Panc-1 cells in serum-free medium, with >90% viability, were used for model establishment. Mice were anesthetized with 2% pentobarbital sodium solution and a small left abdominal flank incision was made. Panc-1 cells (5x10⁶) in 100 µl serum-free medium were injected into the subcapsular region of the pancreas using a 27-gauge needle. The abdominal wound was closed in one layer.

After three weeks, the model mice were divided into five groups randomly to receive different treatment: control group (N, physiological saline), E₁₀ group (emodin, 10 mg/kg), E₂₀ group (emodin, 20 mg/kg), E₄₀ group (emodin, 40 mg/kg), E₈₀ group (emodin, 80 mg/kg). Each mouse was treated 5 times by intraperitoneal injection of emodin every 3 days. The feeding stuff intake was recorded before every treatment. One week after the last treatment, the body weight was measured and the mice were euthanized with 2% sodium pentobarbital, followed by measuring the largest diameter of tumors. Finally, implanted tumors were formalin-fixed and paraffin-embedded for subsequent TUNEL assay.

TUNEL analysis. We assessed the degree of tumor apoptosis with the TUNEL assay after the nude mice were sacrificed. TUNEL staining of paraffin-embedded tumor sections was done with the TUNEL kit according to the instructions. Laser scanning confocal microscope (Olympus BX51, Japan) under 400-fold observation camera was used, with excitation wavelength 488 nm and emission wavelength 568 nm. We observed 10 field visions of the strongest fluorescence on each slice.

Statistical analysis. SPSS 17.0 was used for statistical analysis. Data are presented as the means ± SD. Differences among groups of cells or mice were analyzed by one-way ANOVA followed by unpaired Student’s t-test. P<0.05 was considered statistically significant.

Results

Emodin induces MMP decline in human pancreatic cancer cell line Panc-1. JC-1 fluorescent dyes can gather in the matrix of mitochondria and produce red fluorescence. If the MMP is reduced, JC-1 can not gather the matrix so that JC-1 exists in the matrix as a monomer, producing green fluorescence. JC-1 fluorescent color changed from red to green along with the increasing concentration of emodin, suggesting that MMP declined along with the increasing concentration of emodin (Fig. 1).

Emodin induces apoptosis of human pancreatic cancer Panc-1 cells. We employed Annexin V-FITC cell apoptosis detection kit to detect cell apoptosis. Our study showed that cell apoptosis rate of each group was upregulated dose-dependently by emodin (Fig. 2).

Emodin inhibits the proliferation of human pancreatic cancer cell Panc-1. The cell proliferation-inhibition rate was detected by MTT assay. We found that cell proliferation was inhibited dose- and time-dependently. With treatment of 40 µmol/l emodin, the inhibition rate of each time point (12, 24, 48 or 72 h) is 3.66±0.99%, 17.67±0.49%, 38.13±0.11% and 54.73±0.83%, respectively (Fig. 3).

Emodin increases the amount of feed of model mice. We recorded the feeding stuff eaten by each mouse each day. Data
showed that at the beginning of the experiment, feeding stuff intake of each group was equal. As treatment progressing, feeding stuff intake of the control group declined rapidly while the experimental group declined mildly. The curve of E group declined rapidly at the first stage, but at the last stage the curve became less than the control, E and E group.
stuff intake of all groups decreased day by day. But the feeding stuff intake of E_{40} group declined less than the other groups. In the initial stage, feeding stuff intake of E_{80} group dramatically declined, but it changed gently in the last stage (Fig. 4).

Emodin inhibits the growth of tumor and increased the body weight of model mice. Compared to E_{40} and E_{80} groups, body weight in other groups was obviously reduced. The tumor diameter of E_{80} group was smaller than E_{40} group, but the body weight is smaller than E_{40} group (Fig. 5).

Emodin induces Panc-1 cell apoptosis in mouse tumors. Apoptosis of the tumor cells was detected by TUNEL assay. TUNEL-positive cells were observed with laser scanning confocal microscope (magnification, x400) (Fig. 6). With the increasing dose of emodin, the cell apoptosis increased. Apoptosis of tumor cells in E_{40} group and E_{80} group was significantly increased compared to the control group (P<0.01).

Discussion

Traditional Chinese medicine (TCM) used for treatment of cancer still have several controversies, unclear treatment mechanism and lack of theoretical basis of combination therapy (7,8). Up to now, only few kinds of TCM are accredited and applied in international society. Even so, a survey report shows that approximately 40% of American cancer patients take TCM (9). In recent years, more and more Chinese medicine monomers are extracted. These drugs are of high purity, with single
chemo-therapeutic agents, such as emodin. Emodin is a kind of kinase inhibitor II (10), which could combine with DNA and prevent the proliferation and differentiation of tumor cells (11). Previous studies suggest that emodin may downregulate the nuclear factor-κB (NF-κB) that could improve the proliferation, inhibit apoptosis, enhance cancer cell drug-resistance (12) and decrease the Bax/Bcl-2 ratio (13).

Mitochondria is not only the cells’ energy factory, but also a ‘suicide weapon’ store because multiple apoptosis pathways stay there. Changing the tumor cells' metabolism of mitochondria or stimulating the MMP decline can significantly improve the efficiency of the cancer treatment (14). Mitochondria disorders are proved to be an important part of cell apoptosis, leading to many physiological changes (15). For example, the MMP changes early when the cell is interfered with by the apoptosis factor. The inner mitochondrial membrane permeabilization causes disruption of MMP (16). In recent years, many experiments suggest that keeping the MMP steady could prevent cells from tending to apoptosis (17) and once the MMP dissipates, the cell apoptosis will be irreversible (18). Keeping MMP normal is necessary for mitochondrial function. The decline of MMP is associated with the mitochondrial membrane permeability (MPT) changing, and MPT results from the opening of a mitochondrial permeability transition pore, also known as the MPT pore or MPTP (a protein pore that is formed in the inner membrane of the mitochondria). MPTP allows water and solutes to come into the matrix, causing the expansion of the mitochondria which results in the rupture of outer mitochondrial membrane (MOM) so that the apoptosis factors such as cyt c, Smac/DIABLO, AIF, release to cytoplasm, finally leading to cell apoptosis (19,20). Our study showed that even a low concentration of emodin led to MMP decline. As the drug concentration increased, the MMP declined, with the cell apoptosis rate and cell proliferation inhibition rate rising. Our results suggest that emodin could induce MMP decline in Panc-1 cells, thereby leading to cell apoptosis and cell proliferation inhibition.

Gemcitabine was used to treat advanced pancreatic cancer as a standard drug. Most patients develop resistance to gemcitabine (21), which has strong toxic side effect and is very expensive. The success of this treatment is poor and overall survival has not improved for decades (22). In recent years, much attention was paid to Chinese traditional medicine monomers (CTMM). CTMM promotes apoptosis, inhibits proliferation, reverses drug-resistance in chemotherapy and improves the effect of chemotherapy on cancer therapy (23). Emodin is one of these drugs which has been shown to play a therapeutic role in the gastrointestinal tract, and the National Natural Science Foundation of China (grant no. 81173606). We thank the entire staff of the Animal Experimental Center in Wenzhou Medical College and the scientific research platform of the Second Affiliated Hospital of Wenzhou Medical College for helpful assistance.

References