Embelin-induced brain glioma cell apoptosis and cell cycle arrest via the mitochondrial pathway

AIPING WANG1, BAOCHAO ZHANG1, JIANDANG ZHANG2, WEI WU3* and WEI WU4*

Departments of 1Internal Medicine-Neurology and 2Neurosurgery, Central Hospital of Nanyang, Nanyang 473009; 3Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun 130021; 4The Second Affiliated Hospital of Wenzhou Medical College, Wenzhou 325027, P.R. China

Received January 14, 2013; Accepted February 20, 2013

DOI: 10.3892/or.2013.2369

Abstract. Brain glioma is the most common malignant intracranial tumor and has become the focus of research on diseases of the central nervous system due to its high incidence and poor prognosis. As a small-molecule inhibitor of X-linked inhibitor of apoptosis protein (XIAP), embelin has the ability to specifically inhibit XIAP to control and regulate the apoptosis of various types of tumor cells. However, to date, the mechanism of action for this effect is not well understood. The aim of this study was to investigate the role that the mitochondrial pathway plays in embelin-induced brain glioma cell apoptosis and the effect of embelin on the cell cycle. Brain glioma cells were treated with different doses of embelin. The MTT method was used to determine cell proliferation, and flow cytometry was used to determine apoptosis, as well as changes in the cell cycle and cell mitochondrial membrane potential. Western blot analysis was performed to determine the expression levels of apoptosis-associated proteins, Bcl-2, Bcl-xL, Bax and Bak as well as cytochrome c. We found that embelin induced a time- and dose-dependent apoptosis of brain glioma cells, and that it could arrest the cell cycle in the G0/G1 phase. Embelin also caused changes in brain glioma cell mitochondrial membrane potential. Additionally, embelin regulated the shifting of Bax and Bcl-2 to promote the mitochondrial release of cytochrome c, thus activating the caspase proteins to cause apoptosis. Thus, embelin induces apoptosis in brain glioma cells which is closely associated with the mitochondrial pathway.

Keywords: embelin, XIAP, glioma, mitochondria, cell apoptosis

Introduction

Brain glioma is a tumor originating from neuroepithelial tissue and is the most common malignant intracranial tumor accounting for 70% of human primary malignant brain tumors (1,2). Brain glioma has become the focus of research on diseases of the central nervous system due to its high incidence and poor treatment outcome (3,4). At present, brain glioma is mainly treated with surgery, radiotherapy and chemotherapy, but the curative effect and prognosis are far from optimistic particularly for tumors of higher pathological grade. The treatment results of such diseases have not improved significantly in recent years. The median survival time of patients with brain glioma is approximately one year (5,6). Thus, it has become an urgent research aim to identify the mechanisms promoting brain glioma apoptosis and to search for therapeutic targets with breakthrough effects.

X-linked inhibitor of apoptosis protein (XIAP) is the main member of the inhibitor of apoptosis proteins (IAPs) that regulate apoptosis via various processes (7,8). Previous studies have demonstrated antitumor effects achieved via the inhibition of XIAP expression. As a specific inhibitor of XIAP, embelin inhibits the action of XIAP inside cells through binding with the Smac binding site in the BIR3 domain in the XIAP protein molecule (9-11). Previous studies have demonstrated that embelin exhibits antitumor effects, and embelin at therapeutic dose can restrain the growth of various types of tumor cells including prostate cancer, pancreatic cancer, breast cancer and colon cancer (12-15). According to another report, apoptosis of brain glioma cells is closely related to the mitochondrial pathway (16-18). The inter-shifting of Bcl-2 and Bax proteins releases cytochrome c and activates the caspase family to finally induce apoptosis (19,20).

Despite the above advances, most of the detailed mechanisms of embelin against brain glioma still remain unknown. The purpose of this study was to investigate the impacts of embelin in vitro on the apoptosis of brain glioma cells and the cell cycle and to explore the relevant signaling pathway, so as to provide effective targets and approaches for the clinical therapy of brain glioma.

Materials and methods

Cell culture. Human brain glioma U87 cells (American Type Culture Collection, Manassas, VA, USA), after cell passaging,
were incubated in Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal calf serum, 100 U/ml penicillin and 100 U/ml streptomycin, and were then cultured in an incubator containing 5% CO\(_2\) and 95% oxygen at 37°C.

Cell viability. The cells were cultured in a 96-well culture plate at a density of 1x10^5 cells/ml. Different doses of embelin (Sigma, St. Louis, MO, USA) were administered and all the cells were cultured in a 5% CO\(_2\) incubator for a further 24, 48 and 72 h. Twenty micrograms of MTT (5 mg/ml) was added to each well followed by incubation in a CO\(_2\) incubator for 4 h before the culture solution was disposed of, and 200 µl of DMSO was added to each well at room temperature for oscillation for 15 min. A microplate reader was used for analysis.

Analysis of apoptosis using Annexin V-FITC/PI staining and flow cytometry. Trypsin was digested to collect the cells of all the experimental groups and the cell density was adjusted to 1x10^6 cells/ml. Five microliters of Annexin V-FITC and 5 ml of propidium iodide (PI) were added to the cell culture followed by a 20-min incubation at 4°C prior to flow cytometric analysis.

Cell cycle analysis using flow cytometry. The cells of all the experimental groups were collected using the trypsin method. Consequently, the cells were fixed at 4°C with 75% cold ethanol overnight; ethanol was disposed and the cells were washed with phosphate-buffered saline (PBS). The cell density was adjusted to 1x10^6 cells/ml. Addition of 500 ml of DNA stain to the cells at room temperature, in a dark for 20 min, was carried out before analysis with flow cytometry.

Flow cytometric analysis of the mitochondrial membrane potential. Change in the mitochondrial membrane potential was analyzed with JC-1 staining and flow cytometry, as previously described (21). The fluorescence signal of JC-1 monomer and polymer were measured using FL1 and FL2 probes, respectively. FL1-H indicated green fluorescence intensity and FL2-H red fluorescence intensity. Quantitative analysis was performed using CellQuest analysis software.

Western blot analysis. The cells of all the experimental groups were collected, and 2 ml of lysis solution (50 mM of Tris-HCl, 137 mM of NaCl, 10% glycerin, 100 mM of sodium vanadate, 1 mM of PMSF, 10 mg/ml of aprotinin, 10 mg/ml of peptide, 1% NP-40 and 5 mM of cocktail; pH 7.4) were added with the cell lysis to obtain the proteins. The concentration of the lysates was determined using the BCA method. The proteins were separated by SDS-PAGE. Subsequently, the proteins were transfered to PVDF membranes using a semi-dry method and sealed with 5% skim milk powder at 4°C overnight. The membranes were washed with TBST and the first antibody was added at 37°C for hybridization for 1 h prior to bleaching with TBST. The secondary antibody was added at 37°C for hybridization for 1 h prior to bleaching with TBST and color reaction for 5 min with autoradiography. Quantity One was used for optical density value analysis and measurement. The results are indicated as: the optical density value/β-actin optical density value of the samples.

Caspase activity analysis. A Perkin-Elmer LS-50B fluorospectrophotometer was used to measure the alterations in fluorescence intensity when the excitation wavelength was 380 nm and emission wavelength was 460 nm. Previously described methods were used (19).

Results

Embelin-induced inhibition of brain glioma cell proliferation. In order to investigate the effects of embelin on brain glioma cell growth, U87 cells were cultured with different concentrations of embelin (0, 10, 50, and 150 µg/ml) for 24, 48 and 72 h prior to determination of the cell proliferation rate using the MTT method. We found that the optical density values of the cells decreased gradually when increasing concentrations of embelin were used; this decrease was most significant when 100 µg/ml of embelin were used (Fig. 1). Thus, embelin had an inhibition effect on the growth of brain glioma U87 cells.
Embelin induces apoptosis of brain glioma cells. Brain glioma U87 cells were treated with different doses of embelin for 48 h and flow cytometry was used to determine cell apoptosis. It was found that the number of brain glioma U87 cells that underwent apoptosis significantly increased when treated with increasing doses of embelin in a dose-dependent manner (Fig. 2).

Embelin induces activation of caspase proteins in brain glioma cells. Brain glioma U87 cells were treated with different doses of embelin followed by measurement of the alterations in caspase protein activity. We found that the activity of caspases-3, -8 and -9 increased significantly with increasing doses of embelin. The most significant increase in caspase-3, -8 and -9 activity was observed when 100 µg/ml of embelin was used (Fig. 3). These results indicate that embelin...
induces the activation of caspase proteins in brain glioma cells leading to caspase-dependent apoptosis.

Embelin-induced brain glioma cell apoptosis and its association with the mitochondrial membrane potential. To further investigate the signaling pathway of embelin-induced brain glioma cell apoptosis, JC-1 staining and flow cytometry were used to assess the changes in the mitochondrial membrane potential. Moreover, western blot analysis was used to analyze the changes in the expression levels of relevant proteins such as Bax, Bcl-2, Bcl-xL, Bak and cytochrome c. We found that the therapeutic dose of embelin resulted in a decrease in the mitochondrial membrane potential (Fig. 4A). We also found that embelin downregulated the expression levels of Bcl-2 and Bcl-xL in a dose-dependent manner, while the expression levels of Bax and Bak proteins were increased (Fig. 4B-E). These results indicate that embelin changes the mitochondrial membrane potential to induce an increase in Bax and Bcl-2 expression as well as the release of cytochrome c into the cytoplasm, resulting in brain glioma cell apoptosis.

Embelin-induced brain glioma cell cycle arrest. In order to investigate the effect of embelin on brain glioma cell cycle, flow cytometry was used for cell cycle analysis. The results showed that 48 h following treatment of U87 cells with different doses of embelin, the number of U87 cells in the G0/G1 phase was significantly increased (Fig. 5). We also found that there was a significant decrease in the expression levels of proteins such as CDK4, CDK6 and cyclin D1 that are known to control the cell cycle (Fig. 6). Thus, embelin treatment results in an increased number of brain glioma cells in the G0/G1 phase, leading to inhibition of brain glioma cell proliferation.

Discussion

The occurrence of ubiquitous apoptosis has been widely recognized, and apoptosis has been shown to play an important role in the genesis and progression of tumors (22,23). Previous studies have demonstrated that most of the available antitumor drugs inhibit tumor growth through the induction of tumor cell apoptosis. Therefore, the intervention of apoptosis to treat tumors has become a novel target of research in terms of antitumor drugs and a new direction for the development for current tumor pharmacology.

The aim of the present study was to investigate the role that embelin, as an XIAP inhibitor, plays in brain glioma treatment and its application values. We found that embelin inhibits the proliferation of brain glioma cells in a dose-
time-dependent manner. This indicates that embelin is closely related to the generation and development of brain glioma and is a potential new target for drugs with which to treat brain glioma. Danquah et al (12) found that embelin suppressed the growth of prostate cancer cells. Dai et al (15) demonstrated that embelin inhibited the proliferation of colon cancer cells and promoted apoptosis. Moreover, Heo et al (24) found that embelin inhibited multiple myeloma cell proliferation and extended patient survival via the STAT3 signal transduction pathway. These findings are basically identical to those of the present study, which suggest that embelin inhibits the proliferation of various types of tumor cells.

In order to further explore the specific action mechanism of embelin in brain glioma, brain glioma cells were treated with different doses of embelin, and flow cytometry was used to determine the biological changes in the brain glioma cells. We found that, after brain glioma cells were treated with various doses of embelin, the positive rate of Annexin V staining increased in a dose-dependent manner, indicating that embelin induced the apoptosis of brain glioma cells. However, to date, studies concerning the the possible role of embelin in apoptosis are scarce. Hu et al (25) found that embelin induced human leukemia apoptosis via downregulation of XIAP. Allensworth et al (26) found that embelin at a therapeutic dose increased the sensitivity of breast cancer cells to TRAIL so as to promote breast cancer apoptosis. These results are essentially identical to ours. We found that brain glioma cell growth inhibition by embelin was associated with apoptosis. Joy et al (27) found that embelin arrested the cell cycle of colon cancer cells at phase G1 via downregulation of the p21 gene. Our findings are fundamentally identical to theirs. We found that embelin downregulated the expression of cyclin D1, CDK4 and CDK6 and obviously inhibited the progression of the cell cycle of brain glioma cells arresting it at phase G0/G1.

There are two main signaling pathways that trigger apoptosis. These are the endogenous mitochondrial pathway and the exogenous death receptor pathway (28). We found that after human brain glioma cells were treated with different doses of embelin for 48 h, Bax and Bcl-2 shifted, the mitochondrial membrane potential decreased and cytochrome c was released. These results indicate that the induction of brain glioma cell apoptosis by embelin was closely related with the mitochondria pathway. The Bcl-2/Bax family is a key factor related to the generation and development of brain glioma and is a potential new target for drugs with which to treat brain glioma. Danquah et al (12) found that embelin suppressed the growth of prostate cancer cells. Dai et al (15) demonstrated that embelin inhibited the proliferation of colon cancer cells and promoted apoptosis. Moreover, Heo et al (24) found that embelin inhibited multiple myeloma cell proliferation and extended patient survival via the STAT3 signal transduction pathway. These findings are basically identical to those of the present study, which suggest that embelin inhibits the proliferation of various types of tumor cells.

In conclusion, the present study revealed that embelin induced brain glioma apoptosis via regulation of the Bcl-2/Bax family to act on the mitochondria pathway. As a new intervention factor, embelin is an excellent prospect for use in the clinical therapy of brain glioma.

Acknowledgements

We thank Professor Zhenran Wang from the First Hospital of Jilin University and Professor Wenhai Fan from the College of Medicine of Jilin University for their guidance in this study.

References