Reversal effect of bufalin on multidrug resistance in human hepatocellular carcinoma BEL-7402/5-FU cells

WEI GU*, LONG LIU*, FAN-FU FANG, FENG HUANG, BIN-BIN CHENG and BAI LI

Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China

Received August 8, 2013; Accepted September 13, 2013

DOI: 10.3892/or.2013.2817

Abstract. Multidrug resistance (MDR) is a major obstacle to chemotherapy in patients with hepatocellular carcinoma (HCC). To overcome MDR and improve chemotherapeutic efficacy, novel reversal agents with higher efficacy and lower toxicity are urgently needed for HCC. The present study was designed to examine the potential reversal activity of bufalin, a toxic ligand isolated from the traditional Chinese medicine ‘Chansu’ and to elucidate the possible related mechanisms. A multidrug-resistant HCC cell line, BEL-7402/5-FU, was used as the cell model. The working concentration of bufalin as an effective reversal agent, and the cell viability in the reversal experiments were determined by MTT assay. The effects of bufalin at a non-cytotoxic dose on cell cycle distribution, apoptosis and drug efflux pump activity were measured by flow cytometry. Qualitative observation of apoptosis was also carried out by confocal microscopy. Furthermore, the effects of bufalin on the expression of potential genes involved in MDR of BEL-7402/5-FU cells, including thymidylate synthase (TS), P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), B-cell lymphoma-extra large (Bcl-xL) and Bcl-2-associated X protein (Bax), were determined using real-time PCR and western blot analysis. The results showed that bufalin at a concentration of 1 nM enhanced the chemosensitivity of BEL-7402/5-FU cells to 5-FU with a reversal fold of 3.8 which was similar to that of 1 µM verapamil. Bufalin significantly arrested the cell cycle at the G_0/G_1 phase, induced apoptosis through an increase in the Bax/Bcl-xL ratio, inhibited drug efflux pump activity via downregulation of MRP1, and reduced the expression of TS in BEL-7402/5-FU cells. The present study revealed that bufalin effectively reversed MDR in BEL-7402/5-FU cells through multiple pathways. The combination of bufalin with cytotoxic drugs may serve as a promising strategy for the chemotherapy of HCC.

Introduction

Hepatocellular carcinoma (HCC) still remains a severe health issue in China. More than 402,000 new cases of HCC (14.3% of all cancer cases) and 372,000 deaths (19.0% of all cancer-related deaths) were estimated to have occurred in 2008 in China. HCC is the third most common type of cancer and the third leading cause of cancer-related mortality among the Chinese (1). Although the poor outcome of HCC is mainly attributed to the high rate of advanced stage disease at diagnosis, the poor response of HCC cells to cytotoxic drugs also plays a critical role. The chemoresistance of HCC cells, particularly in its multiple form (multidrug resistance, MDR), either intrinsic or acquired, is a major obstacle to the successful management of HCC (2-4).

To improve the efficacy of cytotoxic drugs for HCC, a few compounds have been utilized as MDR reversal agents to overcome the chemoresistance of HCC cells (5). However, these compounds frequently showed intolerable toxicity when they were administered at an effective dose in clinical trials (6,7). These defects have limited their application in clinical settings. Thus, it is urgent to develop novel reversal agents with higher efficacy and lower toxicity to overcome MDR of HCC.

‘Chansu’, a traditional Chinese medicine composed of dried toad venom or dried secretion from the skin glands of Bufo gargarizans or B. melanostictus, has been used to treat liver cancer in China for several hundreds of years (8). Bufalin, a toxic ligand isolated from ‘Chansu’, has been confirmed as one of the most active components for the treatment of liver cancer. Moreover, bufalin was found to exhibit activity for inducing differentiation and apoptosis in vitro for leukemia (9,10) and cancers of the prostate (11) and stomach (12). Our previous study revealed that bufalin exhibited significant antitumor activity in an orthotopic transplantation model of human HCC in nude mice with no marked toxicity and was able to induce apoptosis of transplanted HCC cells (13). However, little is known concerning the possible effect of bufalin on MDR of HCC. Thus, in the present study, the potential anti-MDR activity of bufalin was evaluated by using a multidrug-resistant human HCC cell line, and the possible mechanisms involving the reversal effect of bufalin were determined.
Materials and methods

Drugs and reagents. Bufalin was purchased from Sigma Chemical Co. (St. Louis, MO, USA) and initially dissolved in anhydrous alcohol before serial dilution with RPMI-1640 medium. 5-Fluorouracil (5-FU) was obtained from Shanghai Xudong Haipu Pharmaceutical Co. (Shanghai, China). Verapamil was purchased from Shanghai Harvest Pharmaceutical Co. (Shanghai China), and it was used as a positive control reversal agent. The primary antibodies against human thymidylate synthase (TS), P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), B-cell lymphoma-extra large (Bcl-xL) and Bcl-2-associated X protein (Bax) were all purchased from Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA).

Cell lines and cell culture. BEL-7402/5-FU, a 5-FU-resistant human HCC cell line with a moderate MDR phenotype (resistance index = 18), was successfully established by imitating the administration pattern of clinical chemotherapy in our previous study (14). The BEL-7402/5-FU cells were able to grow and passage steadily in medium containing 5-FU at a concentration of 50 µM and were used as the cell model in the present study. The cells were cultured in RPMI-1640 medium (HyClone), supplemented with 10% fetal bovine serum (FBS; Sijiqing, China) at 37°C in a humidified atmosphere containing 5% CO2.

Cell viability assay. The effect of drugs on cell viability was quantified using the 3-[4,5-dimethyl-2-thiazol]-2,5-diphenyltetrazolium bromide (MTT) assay. Cells in the exponential growth phase were trypsinized and seeded in 96-well plates and then treated with the scheduled treatment of drugs. Medium without drug was added to the control and blank wells. After incubation for the scheduled time, 10 µl MTT (Amresco, Boston, MA, USA) at a concentration of 5 mg/ml was added for 4 h at 37°C. Then culture medium was removed, and the insoluble formazan crystals were dissolved in 150 µl of dimethyl sulfoxide (DMSO). The absorbance (optical density, OD) was measured at 490 nm of the wavelength using a microplate reader. The cell growth inhibition rate was calculated using the following formula: Growth inhibition rate = (OD of control - OD of treatment) / (OD of control - OD of blank) x 100%. The 10 and 50% inhibitory concentrations (IC10 and IC50) were estimated by probit analysis.

MDR reversal assay. A reversal agent should exhibit neither an inhibitory nor a toxic effect to tumor cells when administered. In the present study, the IC50 value of bufalin alone for BEL-7402/5-FU cells was calculated, and a concentration (1 nM) lower than the IC50 value was designated as the reversal concentration of bufalin in the following experiments.

BEL-7402/5-FU cells were plated in 96-well plates and allowed to grow for 12 h. The cells were then pretreated with 1 nM bufalin for an incubation of 2 h, followed by treatment with serial dilutions of 5-FU for 48 h. Cells treated with 5-FU alone and verapamil alone were considered as the controls. By using the MTT assay as described above, the IC50 of each treatment was calculated. The reversal fold (RF) was defined as the ratio between the IC50 value of 5-FU alone to that of 5-FU combined with bufalin, and RF was used as the index of MDR-reversal activity in the present study.

Cell cycle assay. BEL-7402/5-FU cells were seeded into 6-well plates and incubated for 24 h. Cells were then treated with bufalin at a final concentration of 1 nM for 48 h. The cells treated with medium without bufalin were regarded as the control. After treatment, cells were trypsinized, pelleted, washed, diluted and then fixed by suspending the cells in ethanol at 4°C overnight. After washing and centrifugation, cells were incubated with 400 µl propidium iodide (PI) (50 µg/ml; Sigma) and 10 µl RNase-free RNase (1 mg/ml; Sigma) in phosphate-buffered saline (PBS) in the dark for 30 min. The cells were measured using a FACScan flow cytometer (BD Biosciences, San Jose, CA, USA), and the data were analyzed using ModFit LT for Mac version 3.0 software (Verity Software House, Topsham, ME, USA).

Apoptosis assay. Quantitative assessment of apoptosis was carried out using the Annexin V-FITC apoptosis detection kit (Bender MedSystems, San Bruno, CA, USA). Briefly, BEL-7402/5-FU cells were seeded directly into 6-well plates and then incubated for 36 h. Cells were then treated with bufalin at a final concentration of 1 nM for 24 h. Following bufalin treatment, cells were trypsinized, pelleted, washed and diluted. Annexin V-FITC was added to the cell suspension at a dilution of 1:40, and the mixture was incubated for 10 min at room temperature. The cells were washed, resuspended and incubated with propidium iodide (PI) at a final concentration of 1 µg/ml. The cells were then analyzed by using flow cytometry.

Intracellular ADM accumulation assay. Intracellular accumulation of adriamycin (ADM) was determined by flow cytometry as an index of drug efflux pump activity (14). Cells were plated in 6-well plates and cultured for 36 h. Bufalin was then added at a final concentration of 1 nM for 2 h followed by the addition of ADM at a final concentration of 20 µg/ml for 2 h. Cells were harvested and subjected to flow cytometry with excitation measured at 488 nm and emission measured at 575 nm. The data were analyzed using CellQuest software (BD Biosciences, San Jose, CA, USA).

Rhodamine 123 retention assay. Intracellular retention of Rhodamine 123 (Rh-123) was determined by flow cytometry as a functional index of P-gp activity (14). Cells were plated in 6-well plates followed by culture for 36 h. Bufalin was then added at a final concentration of 1 nM for 2 h and subsequently Rh-123 (Sigma) was added at a final concentration of 0.25 µg/ml for 30 min at 37°C. Cells were harvested and immediately subjected to flow cytometric analysis to measure the Rhodamine fluorescence at an excitation wavelength of 488 nm and an emission wavelength of 530 nm.
The concentrations of these protein samples were determined following by centrifugation at 20,000 x g for 15 min at 4˚C. In 1 mM phenylmethylsulfonyl fluoride (PMSF) for 15 min, the cells were lysed with RIPA lysis buffer (Beyotime Institute of Biotechnology, Haimen, China) containing 1 nM bufalin for 48 h. The cell supernatants were collected and stored at -80°C.

Reversal assay showed that, for BEL-7402/5-FU cells, the IC₅₀ values of bufalin for the parental and resistant cells were 0.75±0.23 and 0.82±0.37 µM at 24 h, 0.15±0.06 and 0.17±0.04 µM at 48 h and 0.06±0.03 and 0.08±0.05 µM at 72 h, respectively. The IC₅₀ values of bufalin for both cell lines at the three time-points were so similar that no significant difference was detected (P>0.05). The results indicated that BEL-7402/5-FU cells were not cross-resistant to bufalin. The IC₅₀ value of bufalin for BEL-7402/5-FU cells at 48 h was 1.7 nM and consequently a concentration of 1 nM was designated as the reversal concentration of bufalin in the following experiments of the present study.

The reversal assay showed that, for BEL-7402/5-FU cells, the IC₅₀ values of 5-FU alone, 5-FU combined with 1 nM bufalin, and 5-FU combined with 1 µM verapamil at 48 h were 427.6±110.5, 112.4±25.3 and 138.7±33.7 µM, respectively. The IC₅₀ values of 5-FU alone and 5-FU combined with 1 µM verapamil at 48 h were 0.08±0.05 µM and 0.06±0.03 µM, respectively. The IC₅₀ values of 5-FU alone and 5-FU combined with 1 µM verapamil at 48 h were 0.06±0.03 µM and 0.08±0.05 µM, respectively. The IC₅₀ values of bufalin for both cell lines at the three time-points were so similar that no significant difference was detected (P>0.05). The results indicated that BEL-7402/5-FU cells were not cross-resistant to bufalin. The IC₅₀ value of bufalin for BEL-7402/5-FU cells at 48 h was 1.7 nM and consequently a concentration of 1 nM was designated as the reversal concentration of bufalin in the following experiments of the present study.
Bufalin increases the drug efflux pump activity in BEL-7402/5-FU cells. The effect of bufalin on drug efflux pump activity in BEL-7402/5-FU cells was evaluated by quantification of intracellular ADM fluorescence. As shown in Fig. 3, the intracellular ADM intensity in BEL-7402/5-FU cells after bufalin treatment increased significantly when compared to the control (P=0.004), which indicated that the drug efflux pump activity was attenuated by bufalin. The intracellular retention of Rh-123, a functional index of P-gp activity, was also determined. Although the Rh-123 intensity in bufalin-treated BEL-7402/5-FU cells was slightly lower than that in the control, no significant difference was found between them (P>0.05). The results suggest that the activity of P-gp may be of little importance in the reversal effect of bufalin. Additionally, the intracellular accumulation of FLU, a functional index of MRP1 activity, was also determined. As opposed to Rh-123, the intracellular FLU was significantly enhanced in bufalin-treated BEL-7402/5-FU cells when compared to the control (P<0.001) which indicated that activity of MRP1 was markedly inhibited by bufalin (Fig. 3). Bufalin decreased the drug efflux pump activity in BEL-7402/5-FU cells via inhibition of MRP1 but not P-gp.

Bufalin downregulates the expression of TS, MRP1 and the ratio of Bcl-xL/Bax. To further clarify the possible mechanisms related to the reversal effect on MDR by bufalin, the expression of several genes involved with MDR of BEL-7402/5-FU cells was quantified by both real-time PCR and western blot analysis. As shown in Fig. 4, the expression levels of TS, MRP1 and Bcl-xL mRNAs, were significantly downregulated while Bax mRNA was greatly upregulated by bufalin (P<0.05). Particularly, the ratio of Bax/Bcl-xL in bufalin-treated BEL-7402/5-FU cells exhibited an increase of nearly 20-fold compared to the control cells. However, no change in the mRNA expression of MDR1 was noted after bufalin treatment (P>0.05). Similar findings were found in our results using western blot analysis on protein levels (Fig. 5). Collectively, these results suggest that bufalin strengthens the efficacy of 5-FU through inhibiting expression of TS, increasing the intracellular drug concentration via reducing the expression/activity of MRP1, inducing apoptosis by regulating apoptosis-related genes and increasing the ratio of Bax/Bcl-xL consequently resulting in an extensive enhancement of the chemosensitivity of BEL-7402/5-FU cells to 5-FU.

Discussion

Chemotherapy with cytotoxic drugs plays an essential role in the management of most malignant tumors. However, chemotherapy of HCC often results in intolerable toxicity to HCC patients who usually suffer from concomitant cirrhosis; and thus has been of limited use in clinical practice (3). Moreover,
even for HCC patients with satisfactory liver function, only a small percentage of patients gain benefits due to intrinsic or acquired chemoresistance. In particular, HCC cells universally present an MDR phenotype immediately after initial chemotherapy; and therefore, HCC is generally deemed refractory to cytotoxic drugs (4). Therefore, reversing MDR has been a major challenge for the success of chemotherapy for HCC. Screening effective chemosensitizers or MDR reversal agents, and combining them with cytotoxic drugs (fluoropyrimidines, anthracyclines, platinum complexes) has been a promising

Figure 2. Bufalin induces cell apoptosis in BEL-7402/5-FU cells. (A) Representative samples assessed by Annexin V/PI staining with flow cytometry. (B) Quantification of the induction of apoptosis by bufalin. Bufalin significantly increased the early apoptosis rates from 6.8 to 19.3% (**P=0.002) in BEL-7402/5-FU cells. Compared to (C) the control cells, (D) obvious apoptosis was observed in cells using confocal microscope after bufalin treatment.

Figure 3. Bufalin decreases the drug efflux pump activity in BEL-7402/5-FU cells. The drug efflux pump activity, P-gp and MRP1 activity in bufalin-treated BEL-7402/5-FU cells were compared to the control cells by quantification of intracellular ADM fluorescence, retention of Rh-123 and accumulation of FLU, respectively. The intracellular ADM intensity in the bufalin-treated BEL-7402/5-FU cells was significantly increased when compared to the control (**P=0.004). The Rh-123 intensity in the bufalin-treated BEL-7402/5-FU cells was slightly lower than that in the control, but no significant difference was found (*P=0.147). The intracellular accumulation of FLU was greatly increased in the bufalin-treated BEL-7402/5-FU cells when compared to the control (**P<0.001). Values were calculated by the Student's t-test. All data are presented as means ± SD. ADM, adriamycin; Rh-123, rhodamine 123; FLU, fluorescein.

Figure 4. Effect of bufalin on the mRNA expression of genes involved in the MDR of BEL-7402/5-FU cells. Relative mRNA expression was normalized to β-actin and estimated by the method of 2−ΔΔCt. No significant change was noted in MDR1 mRNA (*P=0.632), while the expression of TS, MRP1 and Bcl-xL mRNAs was significantly downregulated and Bax mRNA was highly upregulated by bufalin (***P<0.001). Values were calculated by the Student's t-test. All data are presented as means ± SD.
strategy to overcome MDR and thereby successful management of HCC may be achieved (15).

In the past several decades, great efforts have been made to develop and screen compounds or substances to reverse MDR. A few compounds, such as verapamil, cyclosporins, quinidine and tamoxifen, have shown MDR reversal activity to some extent in vitro (16). However, these compounds often cause severe toxicity such as heart failure and immunosuppression resulting in disappointing clinical results (16). In recent years, several natural products extracted from Chinese traditional medicine have been proposed as MDR reversal agents for multidrug resistant leukemia (17), and cancers of the breast (18), lung (19), colon (17,20) and pancreas (21). For HCC, pheophorbide A from Scutellaria barbata (22), dioscin from Dioscorea nipponica Makino (23), schizandrin A from the Fructus Schizandrae (24), and Schisandrol A from Schisandra chinensis (25), have shown encouraging reversal activity in vitro and in vivo. These findings indicate that natural products isolated from Chinese traditional medicine are promising sources of novel MDR reversal agents and warrant further research.

Bufalin, an active ingredient of the traditional Chinese medicine ‘Chansu’, has been proven to be a potent inducer of differentiation in human leukemia cells (9). Moreover, it can induce apoptosis in human leukemia and a large range of solid tumor cells (10-13). Recently, several studies have reported that bufalin suppresses the proliferation of prostate and bladder cancer, osteosarcoma, choriocarcinoma, endometrial and ovarian cancer, and colon cancer in vitro, and this activity has been associated with potent cytotoxicity to human tumor cells through pathways related to apoptosis, cell cycle arrest and autophagy, following treatment alone or in combination (11,26-31). However, these findings were observed when bufalin was administered at a cytotoxic dose, yet, the effect of bufalin on MDR when it is administered at a non-cytotoxic concentration remains unknown. The present study was, therefore, designed to examine the potential reversal activity of bufalin and reveal the possible mechanisms.

In the present study, a concentration of 1 nM which was much less than the IC₅₀ at 48 h (1.7 nM) was used as the reversal concentration of bufalin. Based on the MTT assay, treatment with 1 nM bufalin did not show any significant cytotoxic effect on BEL-7402/5-FU cells. Under such a low dosage, bufalin indeed enhanced the chemosensitivity of BEL-7402/5-FU cells to 5-FU with a RF of 3.8-fold which was similar to that of 1 µM verapamil (3.1-fold). To the best of our knowledge, this is the first study to demonstrate the reversal effect of bufalin on MDR in cancer chemotherapy.

To explore the mechanisms involved in the reversal effects of bufalin on MDR of BEL-7402/5-FU cells, alterations in cell cycle distribution, apoptosis rate, drug efflux pump activity, and the expression of TS, P-gp, MRP1, Bcl-xL and Bax, were determined following treatment with 1 nM bufalin. Firstly, our results showed that bufalin significantly arrested the BEL-7402/5-FU cells at the G₀/G₁ phase and the cells could not enter cell cycle progression and died via the apoptosis pathway. This finding was supported by previous findings that bufalin at the same concentration (1 nM) arrested the cell cycle in endometriotic stromal cells at the G₀/G₁ phase and in human leukemia cells at the G₀/M phase (32,33). It has been reported that the persistent activation of MAP kinase in response to bufalin was one of the signal transduction pathways involved in bufalin-induced apoptosis (34). Particularly, bufalin induced marked apoptosis in human HCC HepG2 cells via both the Fas- and mitochondrial-mediated pathways, and a Fas-mediated caspase-10-dependent pathway may play a crucial role (35). However, in the BEL-7402/5-FU cells treated with bufalin, downregulation of Bcl-xL and the upregulation of Bax and a large increase in the ratio of Bax/Bcl-xL were confirmed in the present study, which contributed to the resensitivity of BEL-7402/5-FU cells to 5-FU. These results were similar to the findings in human gastric cancer MGC803 cells and our previous study in vivo (12,13). Secondly, the drug efflux pump activity of BEL-7402/5-FU cells was significantly attenuated by 1 nM bufalin. As shown in Figs. 3-5, the activity and expression of MRP1 but not P-gp was greatly inhibited. The successful inhibition of the specific ATP-binding cassette transporter in the present study led to a significant reversal of MDR. Additionally, bufalin markedly downregulated the expression of TS, a rate-limiting enzyme in DNA biosynthesis
ONCOLOGY REPORTS 31: 216-222, 2014

Cancer: Pilot study of huachansu in
reverses P-glycoprotein-
5-FU
through an increase in the Bax/Bcl-xL ratio, inhibited the
arrested the cell cycle at the G
phase, induced apoptosis
results suggest that bufalin can effectively reverse the MDR
in HCC cells through multiple pathways. Thus, the combina-
tion of bufalin with cytotoxic drugs may serve as a promising
strategy for the chemotheraphy of HCC.

Acknowledgements

The present study was supported by grants from the National
Natural Science Foundation of China (no. 30600814) and the
‘Qimingxing’ Plan for Young Scientists, Shanghai Municipal
Science and Technology Commission (no. 08QA14003).

References

1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C and Parkin DM:
GLOBOCAN 2008. Cancer Incidence and Mortality Worldwide:
IARC CancerBase No. 10 [Internet]. International Agency for
2. Marin JJ, Romero MR and Briz O: Molecular bases of liver
cancer refractoriness to pharmacological treatment. Curr Med
3. Zhu AX: Systemic therapy of advanced hepatocellular carcinoma:
4. Thomas MB, O’Beirne JP, Furuse J, Chan AT, Abou-Alfa G,
Huang WJ, Kan SF and Wang PS: Effects of bufalin
with cytotoxic drugs may serve as a promising
strategy for the chemotherapy of HCC.

and the primary target of 5-FU (36), which also contributed to
the enhanced chemosensitivity of BEL-7402/5-FU cells.

In conclusion, the present study confirmed the reversal
effect of bufalin on MDR in multidrug-resistant HCC cells at a
low nanomolar concentration. Bufalin at a non-cytotoxic dose
arrested the cell cycle at the G1/G0 phase, induced apoptosis
through an increase in the Bax/Bcl-xL ratio, inhibited the
drug efflux pump activity via downregulation of MRPI and
reduced the expression of TS in BEL-7402/5-FU cells. Our
results suggest that bufalin can effectively reverse the MDR
in HCC cells through multiple pathways. Thus, the combina-
tion of bufalin with cytotoxic drugs may serve as a promising
strategy for the chemotheraphy of HCC.

tripeptide on multi-drug resistance in resistant human hepato-
cellular carcinoma cell line BEL-7402/5-FU. Cancer Lett 269:
17. Ramachandran C, Rabi T, Fonseca HB, Melnick SJ and
Escalon EA: Novel plant triterpenoid drug amoornarin overcomes
multidrug resistance in human leukemia and colon carcinoma
18. Ravizza R, Gariboldi MB, Molteni R and Monti E: Linalool,
a plant-derived monoterpene alcohol, reverses doxorubicin resis-
tance in human breast adenocarcinoma cells. Oncol Rep 20:
625-630, 2008.
19. Xu M, Sheng LH, Zou XH, Zeng SB and Zhang GJ: Reversal effect of
Stephania tetrandra-containing Chinese herb formula SENL
on multidrug resistance in lung cancer cell line SW1573/2R120.
multidrug resistance by andrographolide in a HCT-8/5-FU
multidrug-resistant colorectal cancer cell line. Chin J Dig Dis 6:
82-86, 2005.
Quercetin as a potential modulator of P-glycoprotein expres-
component in Scutellaria barbata, reverses P-glycoprotein-
mediated multidrug resistance on a human hepatoma cell line
23. Sun BT, Zheng LH, Bao YL, Yu CL, Wu Y, Meng XY and
Li YX: Reversal effect of Dioscin on multidrug resistance in
human hepatoma HepG2/adiamycin cells. Eur J Pharmacol 654:
129-134, 2011.
24. Huang M, Jin J, Sun H and Liu GT: Reversal of P-glycoprotein-
mediated multidrug resistance of cancer cells by five schizandrin
isolated from the Chinese herb Fructus Schizandrae. Cancer
25. Fong WF, Wan CK, Zhu GY, Chottaepadhay A, Dey S, Zhao Z.
and Chen XL: Schizandra chinensis reverses P-glycoprotein-mediated multidrug resistance by affecting
signaling in bufalin-and cinobufagin-treated androgen-depen-
dent and -independent human prostate cancer cells. Cancer Sci
27. Hong SH and Choi YH: Bufalin induces apoptosis through
activation of both the intrinsic and extrinsic pathways in human
human osteosarcoma U-2OS and U-2OS methotrexate300-
29. Takai N, Ueda T, Ishii T, et al: Effects of bufalin on the prolifera-
tion of human breast cancer cells. Int J Gynecol Cancer 21:
815-819, 2011.
30. Takai N, Ueda T, Nishida M, Nasu K and Narahara H: Bufalin
induces growth inhibition, cell cycle arrest and apoptosis in human
endometrial and ovarian cancer cells. Int J Mol Med 21: 637-643,
2008.
31. Xie CM, Chan WY, Yu S, Zhao J and Cheng CH: Bufalin induces
autophagy-mediated cell death in human colon cancer cells
through reactive oxygen species generation and JNK
32. Nasu K, Nishida M, Ueda T, Takai N, Bing S, Narahara H and
Miyaokawa I: Bufalin induces apoptosis and the G0/G1 cell cycle
arrest of endometriotic stromal cells: a promising agent for the
cycle arrest and -independent human prostate cancer cells. Anticancer Drugs 20: 59-64,
2009.
34. Han KQ, Huang G, Gu W, Su YH, Huang XQ and Ling CQ:
Anti-tumor activities and apoptosis-regulated mechanisms of
bufalin on the orthotopic transplantation tumor model of human
hepatocellular carcinoma in nude mice. World J Gastroenterol
35. Gu W, Fang FF, Li B, Cheng BB and Ling CQ: Characterization
and resistance mechanisms of a 5-fluorouracil-resistant hepato-
cellular carcinoma cell line. Asian Pac J Cancer Prev 13: