Inhibition of 5-lipoxygenase triggers apoptosis in pancreatic cancer cells

GUO-XIONG ZHOU, XIAO-LING DING, SHENG-BAO WU, HAI-FENG ZHANG, WEI CAO, LI-SHUAI QU and HONG ZHANG

Department of Gastroenterology, Affiliated Hospital of Nantong University, Jiangsu, Nantong 226001, P.R. China

Received July 24, 2014; Accepted October 22, 2014

DOI: 10.3892/or.2014.3650

Abstract. The 5-lipoxygenase (5-LOX) pathway has been associated with a variety of inflammatory diseases including asthma, atherosclerosis, rheumatoid arthritis, cancer and liver fibrosis. Several classes of 5-LOX inhibitors have been identified, but only one drug, zileuton, a redox inhibitor of 5-LOX, has been approved for clinical use. In the present study, 5-LOX was found to be overexpressed not only in pancreatic cancer cell lines but also in tissue samples of patients suffering from pancreatic adenocarcinoma. There was a close correlation between the tumor expression levels of 5-LOX mRNA and protein and the clinicopathological patient characteristics including lymph node metastasis and TNM stage. Zileuton suppressed the proliferation of SW1990 cells in a concentration- and time-dependent manner. In addition, zileuton induced SW1990 cells to undergo apoptosis and significantly decreased 5-LOX expression. The number of apoptotic cells, estimated by flow cytometry, Annexin V/PI assay, TUNEL staining and sub-diploid population was significantly higher than that of the control. These results suggest that the level of 5-LOX expression was increased in pancreatic cancer tissues and may be related to lymph node metastasis and TNM stage.

Introduction

Pancreatic adenocarcinoma remains one of the most lethal malignancies. The incidence of pancreatic cancer has steadily increased over the past four decades (1). Satisfactory treatment is available only for the minority of patients who present with very early-stage disease. Despite recent research and improvements in imaging, efforts to detect tumors at an earlier stage or augmented standard therapy have done little to change the dismal prognosis. The 5-year survival rate is less than 5% (1), ranking this cancer as the fourth leading cause of cancer-related to death (2). Importantly, at the time of diagnosis, the majority of patients (80-90%) already have locally advanced, metastatic or inoperable tumors. Radiation therapy alone or in combination with chemotherapy has shown only modest efficacy in local control and palliation (3,4). A new therapeutic strategy is urgently needed to control this aggressive cancer.

Early investigations into the role of arachidonic acid metabolism in cancer mainly focused on the COX pathway because of the epidemiological observation that the incidence of colonic cancer is significantly reduced in regular users of aspirin and other nonsteroid anti-inflammatory drugs (5,6). In the past few years, several studies have suggested the importance of the LOX pathways in the development of human cancers, including pancreatic, breast, prostate, esophageal and colon cancers (7-9). Previous studies in our laboratory have shown that 5-lipoxygenase (5-LOX) mRNA and protein are expressed in human pancreatic cancer cell lines and that triptolide treatment significantly downregulates 5-LOX expression (10). Furthermore, LOX inhibitors were found to block proliferation of human pancreatic cancer cells (11,12) whereas the LOX metabolites 5-HETE and 12-HETE were found to stimulate cancer growth through activation of the p44/42 mitogen-activated protein kinase and PI3/Akt kinase pathways (13).

Based on the above evidence, we investigated the expression status of 5-LOX in pancreatic cancer samples and tested 5-LOX inhibitors in the prevention or treatment of pancreatic cancer. We analyzed 5-LOX expression in pancreatic cancer tissue samples using RT-PCR and immunohistochemistry and then examined the effect of zileuton, a 5-LOX inhibitor, on cell viability and on the 5-LOX expression in the human adenocarcinoma SW1990 cell line. We also investigated the mechanism of LOX inhibitor-induced apoptosis in human pancreatic cancer cells.

Materials and methods

Reagents. Dulbecco's modified Eagle's medium (DMEM) and fetal bovine serum were obtained from Gibco-BRL (Grand Island, NY, USA). Zileuton was obtained from Gaomeng Chemicals (Beijing, China). The monoclonal antibody against
Cell viability was calculated using the equation: Viability (%) = (1 - ODt/ODc) x 100, where ODt and ODc are the optical densities of the treated and control cultures, respectively.

TUNEL assay. Cell apoptosis was measured using the TUNEL assay (Roche Diagnostics, Germany). SW1990 cells were seeded onto 6-well plates that contained coverslips and were then incubated for 24 h. The medium was then replaced with either control medium or medium containing zileuton at 40, 20 or 10 µg/ml, incubated for 24 h and then fixed with 4% paraformaldehyde. Cells were then washed with PBS, chilled in an ice bath for 2 min with permeabilization solution, washed again with PBS and incubated with TUNEL mixture of terminal deoxyribonucleotidyl transferase and dUTP in DNA-labeling solution for 1 h at 37°C. Cells were then rinsed twice with PBS, incubated with 50 µl of enzyme-labeled anti-fluorescein antibody solution in the dark for another 30 min. After the cells were rinsed with PBS, 3,3-diaminobenzidine was added for color development and hematoxylin was used for counterstaining. For each experimental group, a total of 1,000 cells from 5 high-power field images were examined under a microscope.

Flow cytometric assay. Cells (1x10^6) were seeded into 50-ml dishes and incubated for 24 h at 37°C. Then zileuton at 40, 20, and 10 µg/ml was directly added to the dishes and incubated for an additional 24 h. Cells were collected, washed with PBS and resuspended in PBS. Apoptotic cell death was identified by double supravital staining with recombinant FITC (fluorescein isothiocyanate)-conjugated Annexin V and propidium iodide (PI), using the Annexin V-FITC Apoptosis Detection kit (Becton-Dickinson, Franklin Lakes, NJ, USA) according to the manufacturer's instructions. Flow cytometric analysis was performed immediately after supravital staining. Data acquisition and analysis were performed in a Becton-Dickinson FACSCalibur flow cytometer using CellQuest software. The distribution of cells in the cell-cycle phases was determined using flow cytometric analysis of DNA content. Briefly, after treatment with zileuton at 20 µg/ml for 24 h, cells were fixed with ice-cold 70% ethanol and stored at -20°C. Prior to flow cytometry, the cells were washed and resuspended at 1x10^7 cells/ml in PBS and incubated with 100 µg/ml RNase and 50 µg/ml PI at 37°C for 30 min. Samples were analyzed using a flow cytometer (FACSCalibur type, BD Biosciences, San Diego, CA, USA). The apoptotic cells were detected on a DNA content histogram as a sub-diploid or pre-G1 peak.

Detection of the 5-LOX mRNA level by RT-PCR. Total RNA was extracted from 22 cases of pancreatic cancer tissues, their corresponding non-tumor tissues and SW1990 cells treated with 20 µg/ml of zileuton for 24 and 48 h. After being reversely transcribed into cDNA, 1 µl of the RT product was used as a template for PCR. The primer sequences used to amplify the 5-LOX gene were: forward, 5'-TCA-TCG-TGG-ACT-TTG-AGC-TG-3' and reverse, 5'-AGA-AGG-TGG-GTG-ATG-GTC-TG-3'. The primers for amplifying the β-actin gene were: forward, 5'-AGA-AGG-GTC-GTG-GCA-GG-3' and reverse, 5'-ATG-CAT-TCA-CCT-CCC-CCT-3'. The expected amplification fragment lengths of 5-LOX and β-actin were 262 and 486 bp, respectively. PCR was performed at 94°C for 5 min, 36 amplification cycles at 94°C for 40 sec, 54°C for 55 sec and 72°C for 1 min and a final extension at 72°C for 5 min.
7 min. Amplification was performed in a Perkin-Elmer 2400 thermocycler (Applied Biosystems, Foster City, CA, USA). The PCR products were resolved by electrophoresis on 1.5% agarose gel and visualized after ethidium bromide staining and ultraviolet irradiation. The relative level of 5-LOX mRNA expression was analyzed by normalizing the band intensity of 5-LOX to that of β-actin. The detection was performed 6 times.

Statistical analysis. All data are expressed as mean ± SE. The significance of the difference between 2 groups was assessed by one-way ANOVA and the frequency of computing was performed by Chi-square or Fisher’s exact probability test using STATA software package. P<0.05 was considered to indicate a statistically significant result.

Results

Increased 5-LOX expression in pancreatic cancer. By RT-PCR, 5-LOX mRNA expression was detected in 6/48 cases (12.5%) of the non-tumor tissues and in 39/48 cases...
(81.3%) of the pancreatic cancer tissues (representative data shown in Fig. 1A). Additionally, 5-LOX protein expression was detected in 7/48 cases (14.6%) of the non-tumor tissues and in 39/48 cases (81.3%) of the pancreatic cancer tissues (Fig. 1B and C). The difference in 5-LOX expression between the non-tumor and tumor tissues was statistically significant (P<0.01). Furthermore, we correlated the tumor expression of 5-LOX with clinicopathological data and observed that 5-LOX mRNA (P<0.05, Table I) and protein (P<0.05, Table II) expression was statistically significantly associated with lymph node metastasis and TNM stage.

Inhibitory effect of zileuton on SW1990 cell proliferation. SW1990 cells were treated with 40, 20, 10, 5 and 1 µg/ml zileuton for 24, 48, and 72 h and cell viability was assessed by MTT assay. We observed that zileuton suppressed SW1990 cell proliferation in a concentration- and time-dependent manner (Fig. 2). Approximately 79% of the SW1990 cells were still viable after treatment with 20 µg/ml of zileuton for 72 h, while the viability decreased to 40% when the concentration of zileuton was increased to 40 µg/ml.

Apoptosis induced by zileuton in SW1990 cells. TUNEL assay results showed that zileuton induced apoptosis in the SW1990 cells (Fig. 3). Cells exhibited cytoplasmic shrinkage and nuclei were stained brown and the cytoplasm was stained blue which indicated apoptosis. After a 24-h exposure to zileuton at concentrations of 40, 20 or 10 µg/ml, the percentages of apoptotic cells estimated by TUNEL assay were 45.1, 31.3 and 24.7% respectively, which were significantly higher than that of the control (9.6%, P<0.05, Fig. 6A).

We analyzed the DNA content of zileuton-treated SW1990 cells by flow cytometric analysis. After a 24-h exposure to 20 µg/ml of zileuton, apoptotic cells in the sub-diploid population before the G0/G1 phase were observed by flow cytometry (Fig. 4).

During early apoptosis, phosphatidylserine, a phospholipid usually located on the inner surface of the plasma membrane, translocates to the outer plasma membrane due to the loss of membrane phospholipid symmetry. Annexin V preferentially binds to the negatively charged phosphatidylserine. Annexin V conjugated to fluorescein allows for detection of early apoptosis by flow cytometry or fluorescence microscopy. Early apoptotic cells bind Annexin V but do not exhibit intracellular staining with PI. As cells progress through apoptosis, the integrity of the plasma membrane is lost, allowing PI to penetrate and label the cells with a strong yellow-red fluorescence. The results in Fig. 5 demonstrate strong Annexin V staining in the SW1990 pancreatic cancer cells after 20 µg/ml zileuton treatment for
24 h, but no staining or only very weak staining was observed in the control cells.

The apoptotic cell levels estimated by flow cytometry were induced by zileuton in a concentration-dependent manner. The percentage of apoptotic cells estimated by flow cytometry and Annexin V/PI assay were 43.7, 29.8 and 23.3% respectively, which were significantly higher than that of the control (7.3%, P<0.05, Fig. 6B).

Our data indicated that zileuton induced apoptosis in SW1990 cells. Interestingly, the cellular levels of 5-LOX mRNA decreased with zileuton treatment (Fig. 7A and Table III). Furthermore, immunocytochemical staining revealed that the level of 5-LOX protein expression in the SW1990 cells was significantly decreased following zileuton treatment (Fig. 7B-D). Using image analysis software to quantify the 5-LOX mRNA levels, a significant difference between the zileuton-treated group and the control group was noted (Table III).

Discussion

Arachidonic acid (AA) can be converted by 5-LOX to 5-HPETE and then from 5-HETE to LTA4, which can result in the generation of mutagens capable of damaging DNA and inducing mutations (15,16) and show certain levels of biological activity in humans (17,18). However, LTA4 can be further hydrolyzed to LTB4 by LTA4 hydrolase. LTB4 binds to the LTB4 receptor and then takes part in its biological actions such as enhancing proliferation and suppressing apoptosis (19,20). Several studies have demonstrated that suppression of the expression of 5-LOX or LTB4 can inhibit the proliferation of various types of cancer cells (20,21). Our study is the first detailed investigation of the effect of the 5-LOX inhibitor zileuton on pancreatic cancer SW1990 cells. Our data demonstrated that 5-LOX expression was increased in pancreatic cancer tissues when compared with their adjacent non-tumor tissues. Zileuton caused a concentration- and time-dependent induction of apoptosis and significantly decreased 5-LOX mRNA and protein levels in pancreatic cancer cells.
5-LOX expression has been reported to be increased in cancers of the pancreas (22), breast (23), prostate (24,25) and esophagus (21). 5-S-HETE production can promote the growth of these cancer cells. A recent study indicated that 5-LOX expression was detected in 4/32 cases (13%) of normal epithelium and in 69/81 cases (85%) of esophageal cancer. The difference in 5-LOX expression between normal and tumor tissues was statistically significant (P<0.01). Furthermore, this study assessed the correlation between the expression of 5-LOX and clinicopathological data and revealed that 5-LOX expression was statistically significantly associated with patient gender, tumor cell differentiation, lymph node metastasis and tumor size in Chinese cases (21). Yet, the expression status of 5-LOX in pancreatic cancer has not yet been reported. The present study showed that >70% of the pancreatic cancer cases exhibited 5-LOX mRNA and protein expression in their tumor tissues. Furthermore, we observed that tumor 5-LOX expression was statistically significantly correlated with patient age, lymph node metastasis and TNM stages (P<0.02). 5-LOX could have different mechanisms of action to promote tumor metastasis, such as promoting cell growth and inhibiting apoptosis, promoting new vessel formation and enhancing tumor cell invasion. Ye et al (26) reported that cigarette smoke induces 5-LOX expression and this plays an important role in the activation of MMP-2 and VEGF to induce the angiogenic process and in the promotion of inflammation-associated adenoma formation in mice. Furthermore, 5-LOX inhibitors decreased the incidence of colon adenoma formation and reduced angiogenesis, MMP-2 activity and VEGF protein expression in the colon of these animals (26). 5-S-HETE stimulated DNA synthesis in human microvascular endothelial cells via activation of Jak/STAT and phosphatidylinositol 3-kinase/Akt signaling, leading to induction of basic fibroblast growth factor 2 (bFGF-2) (27). Wenger et al (28) hypothesized that a combination of Celebrex and Zyflo may be a new strategy to decrease tumor growth in liver metastases in advanced pancreatic cancer. Lymph node metastasis is an independent prognosis factor for gastric cancer patients (29). The correlation of tumor 5-LOX expression with lymph node metastasis suggests that a pancreatic cancer patient with 5-LOX expression in tumor tissue may have a poorer prognosis. Whether it can be used as an appraisal guideline for predicting patient prognosis would require a long-term and large-scale follow-up investigation.

Zileuton [N-(1-benzo(b)-thien-2-yl)ethyl]-N-hydroxyurea] is a selective 5-LOX inhibitor approved by the US FDA in 1996 for the treatment of asthma in adults and children. Yet, research has demonstrated that zileuton prevents lung tumors and slows the growth and progression of adenomas to carcinoma (30). In a carcinogen-induced pancreatic cancer model in hamsters, zileuton (28 mg/day) and a combination of zileuton (28 mg/day) and celecoxib (7 mg/day) significantly inhibited tumor incidence and tumor size (31). A combination of zileuton and celecoxib also significantly reduced the incidence, number and size of liver metastases (28). Zileuton was found to be effective against DMBA-induced hamster oral carcinogenesis and

Table III. Expression levels of 5-LOX mRNA in SW1990 cells with or without zileuton treatment.

<table>
<thead>
<tr>
<th>Group</th>
<th>5-LOX mRNA levels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Treatment group</td>
</tr>
<tr>
<td>24 h 5-LOX/β-actin</td>
<td>0.4280±0.0086a</td>
</tr>
<tr>
<td>48 h 5-LOX/β-actin</td>
<td>0.0200±0.0032a</td>
</tr>
</tbody>
</table>

*P<0.01. 5-LOX, 5-lipoxygenase.
appeared even more effective than celecoxib (32). Consistent with this finding, topically applied zileuton was more effective than COX inhibitors in suppressing the inflammation of mouse dermafat model models of topical phorbol ester or arachidonic acid (33,34). Oral administration of zileuton or other inhibitors of the 5-LOX pathway have been shown to be chemopreventive in animal models of pancreatic cancer (31), lung cancer (30), skin cancer (35) and esophageal adenocarcinoma (36). These findings suggest that the 5-LOX pathway of arachidonic acid metabolism plays an important role in inflammation-associated carcinogenesis including oral cancer. 5-LOX-mediated metabolism of AA promotes the growth of a variety of cancer cells, and 5-LOX inhibitors suppress cell proliferation and induce apoptosis in cancer cells. Inhibitors of 5-LOX metabolism have shown promise for the treatment of asthma and shock with limited side effects in preclinical and clinical trials (37,38). These studies suggest that inhibitors of 5-LOX, similar to inhibitors of COX, could be attractive candidates for anti-neoplastic application. Taken together, the present study and previous evidence suggest that the importance of 5-LOX overexpression and inhibition of the 5-LOX signaling pathway must be considered in the prevention and treatment of pancreatic cancer. Although the underlying mechanisms by which 5-LOX inhibitors induce apoptosis in pancreatic cancer cells remain unclear, further extensive and intensive investigations of 5-LOX inhibitors in pancreatic cancer are warranted.

Acknowledgements

This study was supported by the Natural Science Foundation of Jiangsu Province, China (no. BK2004049). We thank Professor Ming Jiang for his valuable suggestions.

References

