MicroRNA-874 inhibits growth, induces apoptosis and reverses chemoresistance in colorectal cancer by targeting X-linked inhibitor of apoptosis protein

JINFENG HAN1, ZHONGMIN LIU1, NANYA WANG2 and WEIYUN PAN1

1Department of ICU and 2Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China

Received November 25, 2015; Accepted January 5, 2016

DOI: 10.3892/or.2016.4810

Abstract. MicroRNA-874 (miR-874) is downregulated and acts as a tumor suppressor in several types of cancers, whereas the biological function of miR-874 in colorectal cancer (CRC) remains unclear. The aims of the present study were to investigate the clinical significance, biological effects, and the underlying mechanisms of miR-874 in CRC. Reverse transcription-quantitative PCR (RT-qPCR) was used to detect miR-874 expression in CRC cell lines and tissue samples. MTT and colony formation assays and flow cytometry were performed to analyze the effects of miR-874 expression on growth, apoptosis and the chemoresistance of CRC cells. Regulation of putative miR-874 targets was determined by dual-luciferase reporter assays. RT-qPCR and western blot assays were performed to detected the levels of X-linked inhibitor of apoptosis protein (XIAP) mRNA and protein expression. It was found that expression of miR-874 was downregulated in CRC tissues and cell lines, and its expression was significantly negatively correlated with TNM stage and lymph node metastasis of the CRC patients. Functional assays revealed that restoration of miR-874 inhibited proliferation, reduced colony formation, enhanced apoptosis, as well as decreased the 5-fluorouracil (5-FU) resistance of the CRC cells. Through luciferase activity assay, RT-qPCR and western blot analysis, XIAP was shown to be a direct target of miR-874. In addition, XIAP expression was significantly increased in the CRC tissues and cell lines, and was inversely correlated with miR-874 expression. Importantly, downregulation of XIAP in CRC cells had an effect similar to that of miR-874 overexpression. Taken together, these data showed that miR-874 inhibits growth, increases apoptosis and enhances chemosensitivity in CRC cells by targeting XIAP, suggesting that miR-874 may be a potential molecular target for the treatment of human CRC.

Introduction

Colorectal cancer (CRC) has the third highest incidence of all human malignant diseases, and accounts for ~9.4% of all cancer cases worldwide (1). According to the International Agency for Research on Cancer, more than 1 million new cases are detected each year (2). Although many diagnostic and therapeutic strategies have been applied for CRC, the 5-year survival rate of patients with advanced CRC (stage IV and unresectable stage IIIc CRC) is less than 12%. CRC is a complex multistep process involving genetic dysregulation of proto-oncogenes and tumor-suppressor genes (3). Thus, it is imperative to understand the molecular mechanisms that underlie CRC initiation and development, which may contribute to the identification of molecular diagnostic markers and novel therapeutic targets.

Recently, microRNAs (miRNAs) have attracted wide attention in cancer biology. miRNAs are a class of small, non-coding RNAs, 18-25 nucleotides in length, that are associated with 3' untranslated regions (3'UTRs) of specific target messenger RNAs (mRNAs), resulting in their degradation or translational inhibition (4,5). Accumulating evidence suggests that dysregulated miRNAs are involved in many biological processes, including growth, apoptosis, development and tumorigenesis (6,7). It has been shown that miRNAs play diverse roles in the regulation of cancer cell proliferation, invasion, apoptosis and drug resistance, and function as oncogenes or tumor-suppressor miRNAs depending on their target (8,9). Several reviews have reported that dysregulation of miRNAs are involved in CRC progression, development and chemoresistance (10-12).

miR-874, an important miRNA, is downregulated and functions as a tumor suppressor in several types of cancers including gastric (13,14), breast (15) and non-small cell lung cancer (NSCLC) (16), and maxillary sinus squamous cell carcinoma (17). However, the role of miR-874 in CRC development and its possible molecular mechanisms remain unclear. Therefore, the aims of the present study were to investigate the...
PCR was performed using SYbR Premix Ex Taq (Takara, USA) according to the manufacturer's instructions. Real-time M-MLV reverse transcriptase kits (Promega, Madison, WI, USA) were used to synthesize complementary DNA (cDNA) from RNA molecules <200 nucleotides in size, which were purified using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and quantified using the miScript SYBR-Green PCR kit (Qiagen). The miRNA sequence-specific reverse transcription-quantitative PCR (RT-qPCR) primers for miR-874 and endogenous control U6 were purchased from mirVana miRNA isolation kit (Ambion, Austin, TX, USA). The plasmid encoding XIAP was purchased from GenePharma (Shanghai, China). The miRNA sequence-specific reverse transcription-quantitative polymerase chain reaction (RT-qPCR) primers for miR-874, first-strand cDNA was synthesized using miScript reverse transcription kit (Qiagen, Germany), and were then transfected with the miR-874 mimic or miR-NC for 48 h and incubated with different concentrations of 5-fluorouracil (5-FU) for an additional 48 h. Then cell proliferation was determined by MTT assay. Briefly, the transfected cells (5x10³ cells/well) were seeded in each well of 12-well plates. The cells were then transfected with the miR-874 mimic or miR-NC for 48 h and incubated with different concentrations of 5-fluorouracil (5-FU) for an additional 48 h. Then cell proliferation was determined by MTT assay. The fold-change in target mRNA or miRNA expression was calculated using the $2^{-\Delta\Delta Ct}$ method following normalization to GAPDH or U6 expression, respectively.

**Materials and methods**

**Clinical specimens.** Thirty-two paired human CRC tissue samples and matched tumor-adjacent tissues were obtained from CRC patients and histopathologically diagnosed at the First Hospital of Jilin University (Changchun, China). The specimens were collected at surgery, immediately frozen in liquid nitrogen and stored at -80°C until total RNAs or proteins were extracted. The patient characteristics and clinicopathological features were collected and are described in Table I. The present study was approved by the Ethics Committee of Jilin University. Written informed consent for use of tissue samples was obtained from all patients before surgery.

**Cell lines and culture.** Four human CRC cell lines, LoVo, SW1116, SW480 and HCT-116, and a normal colonic cell line (NCM460) were purchased from the Cell Bank of the Chinese Academy of Sciences (Shanghai, China), and were cultured in Dulbecco's modified Eagle's medium (DMEM; Gibco, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (FBS; Gibco-BRL, Gaithersburg, MD, USA), 100 U/ml penicillin or 100 µg/ml streptomycin in a humidified atmosphere of 5% CO₂ at 37°C.

**Reverse transcription-quantitative polymerase chain reaction.** Total RNA of the tissues and cultured cells was isolated using TRIzol reagent (Invitrogen, Carlsbad, CA, USA), and RNA molecules <200 nucleotides in size were purified by the mirVana miRNA isolation kit (Ambion, Austin, TX, USA) according to the manufacturer's instructions. For detection of miR-874, first-strand cDNA was synthesized using miScript reverse transcription kit (Qiagen, Germany), and were then quantified using the miScript SYBR-Green PCR kit (Qiagen) under the 7900 Real-Time PCR system (Applied biosystems, Foster City, CA, USA). The miRNA sequence-specific reverse transcription-quantitative PCR (RT-qPCR) primers for miR-874 and endogenous control U6 were purchased from Qiagen. To quantify XIAP and GAPDH were used as previously described (18).

**Transfection.** The miR-874 mimic (miR-874) and corresponding negative control (miR-NC) were purchased from GenePharma (Shanghai, China). The plasmid encoding XIAP-siRNA (pSi-XIAP) and the plasmid encoding non-siRNA (pSi-NC) were gifted by Dr Yang Qu (Jilin University). For transfection, the cells were plated in 6- or 12-well plates 24 h before transient transfection. Transfection was performed using Lipofectamine 2000 reagent (Invitrogen) in Opti-MEM media (Gibco) using 50 nM miR-874/miR-NC or 50 µg pSi-XIAP/pSi-NC according to the manufacturer's instructions. Analyses were performed 48-72 h after transfection.

**Cell proliferation and colony formation assays.** Cell proliferation was determined by MTT assay. Briefly, the transfected cells (5x10² cells/well) were seeded into 96-well microplate and cultured in DMEM including 10% FBS. At the indicated time (24, 48, 72 and 96 h), 20 µl MTT solution (5 mg/ml) was added to each well and cultured for 4 h, and then 200 µl of dimethyl sulfoxide (DMSO; Sigma) was added to each well followed by shaking for 15 min to dissolve the crystals. The absorption at 570 nm was measured under a microplate reader (Molecular Devices Corp., Sunnyvale, CA, USA). All experiments were performed in triplicate.

**Analysis of cell apoptosis.** Analysis of cell apoptosis was performed using a phycoerythrin (PE)-Annexin V apoptosis detection kit (BD Pharmingen, San Jose, CA, USA). Briefly, 4x10⁵ transfected cells were seeded in 6-well plates and cultured for 48 h. Then, the cells in the suspension that were adherent, were harvested and labeled with Annexin V for 15 min in a dark place, and then 50 µg/ml propidium iodide (PI; Sigma-Aldrich, St. Louis, MO, USA) was added to each sample. The fold-change in target mRNA or miRNA expression was calculated using the $2^{-\Delta\Delta Ct}$ method following normalization to GAPDH or U6 expression, respectively.

**In vitro assay of chemosensitivity.** SW480 cells (2x10⁴ each well) were seeded in each well of 12-well plates. The cells were then transfected with the miR-874 mimic or miR-NC for 48 h and incubated with different concentrations of 5-fluorouracil (5-FU) for an additional 48 h. Then cell proliferation was determined by MTT assay. Briefly, the transfected cells (5x10² cells/well) were seeded into 96-well microplate and cultured in DMEM including 10% FBS. At the indicated time (24, 48, 72 and 96 h), 20 µl MTT solution (5 mg/ml) was added to each well and cultured for 4 h, and then 200 µl of dimethyl sulfoxide (DMSO; Sigma) was added to each well followed by shaking for 15 min to dissolve the crystals. The absorption at 570 nm was measured under a microplate reader (Molecular Devices Corp., Sunnyvale, CA, USA). All experiments were performed in triplicate.

**Analysis of cell apoptosis.** Analysis of cell apoptosis was performed using a phycoerythrin (PE)-Annexin V apoptosis detection kit (BD Pharmingen, San Jose, CA, USA). Briefly, 4x10⁵ transfected cells were seeded in 6-well plates and cultured for 48 h. Then, the cells in the suspension that were adherent, were harvested and labeled with Annexin V for 15 min in a dark place, and then 50 µg/ml propidium iodide (PI; Sigma-Aldrich, St. Louis, MO, USA) was added to each sample. The cell apoptosis ratio was analyzed using a FACSCalibur flow cytometer (BD Biosciences, Mansfield, MA, USA).

**Table I. Correlation between clinicopathological features and miR-874 expression in 32 patients with colorectal cancer.**

<table>
<thead>
<tr>
<th>Variables</th>
<th>No. of cases</th>
<th>Low n (%)</th>
<th>High n (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;60</td>
<td>14</td>
<td>7 (50.0)</td>
<td>7 (50.0)</td>
<td>&gt;0.05</td>
</tr>
<tr>
<td>≥60</td>
<td>18</td>
<td>8 (44.4)</td>
<td>10 (55.6)</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td>&gt;0.05</td>
</tr>
<tr>
<td>Male</td>
<td>17</td>
<td>9 (52.9)</td>
<td>8 (47.1)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>15</td>
<td>6 (40.0)</td>
<td>9 (60.0)</td>
<td></td>
</tr>
<tr>
<td>TNM stage</td>
<td></td>
<td></td>
<td></td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>I-II</td>
<td>22</td>
<td>6 (27.3)</td>
<td>16 (72.7)</td>
<td></td>
</tr>
<tr>
<td>III-IV</td>
<td>10</td>
<td>9 (90.0)</td>
<td>1 (10.0)</td>
<td></td>
</tr>
<tr>
<td>Tumor size (cm)</td>
<td></td>
<td></td>
<td></td>
<td>&gt;0.05</td>
</tr>
<tr>
<td>&lt;5</td>
<td>19</td>
<td>8 (42.1)</td>
<td>11 (57.9)</td>
<td></td>
</tr>
<tr>
<td>≥5</td>
<td>13</td>
<td>7 (53.8)</td>
<td>6 (46.2)</td>
<td></td>
</tr>
<tr>
<td>Lymph node metastasis</td>
<td></td>
<td></td>
<td></td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>No</td>
<td>21</td>
<td>6 (28.6)</td>
<td>15 (71.4)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>11</td>
<td>9 (81.8)</td>
<td>2 (19.2)</td>
<td></td>
</tr>
</tbody>
</table>
was determined by the MTT assay as described above. The IC<sub>50</sub> values were calculated.

In addition, the effects of miR-874 on cell proliferation and apoptosis were investigated in SW480 cells exposed to an IC<sub>50</sub> value of 5-FU. Briefly, the SW480 cells were transfected with miR-874 mimic or miR-NC for 48 h, followed by exposure to an IC<sub>50</sub> value of 5-FU for an additional 48 h. Cell colony formation and apoptosis were determined in the above cells.

Luciferase assays. The human XIAP 3'UTR oligonucleotides containing the wild-type (Wt) or mutant (Mut) miR-874 binding site were cloned by PCR and inserted into the pGL3 vector (Ambion) at the NheI and XhoI sites. For the luciferase assay, the SW480 cells were seeded in 24-well plates for 24 h, and then co-transfected with 100 ng of luciferase reporter vectors (Wt/Mut) and 50 nM of miR-874 or miR-NC. Firefly and Renilla luciferase activities were measured using the Dual-Luciferase Reporter assay (Promega, Madison, WI, USA) at 48 h after transfection.

Western blotting. Total protein was extracted from the cells or tissue samples using cell lysis buffer (Cell Signaling Technology, Danvers, MA, USA). The concentrations of protein were determined with a bicinchoninic acid (BCA) protein assay kit (Pierce, Rockford, IL, USA). Equivalent amounts of protein (30 µg each lane) were electrophoresed on SDS-polyacrylamide gels (SDS-PAGE) and transferred to polyvinylidene difluoride (PVDF) membranes (Millipore, Bedford, MA, USA). The membranes were blocked with 5% non-fat milk in Tris-buffered saline for 2 h and then incubated with antibodies against XIAP or GAPDH (both from Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) overnight at 4°C. The membranes were washed thrice with TBS buffer and incubated with horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG (1:5,000; Santa Cruz Biotechnology, Inc.) at room temperature for 2 h. The protein band was analyzed on X-ray film (Denville Scientific) using chemiluminescent reagents. GAPDH was used as the internal control.

Tumor xenograft treatment model. Twenty 6-week-old male BALB/c nude mice (18-20 g) were purchased from the Experimental Animal Center of Changchun Institute for Biological Sciences (Changchun, China), and maintained under specific pathogen-free (SPF) conditions. All animal experimental procedures were approved by the Institutional Animal Care and Use Committee of Jilin University.

Equal numbers of SW480 cells (2x10<sup>6</sup>) with stable expression of the miR-874 mimic or miR-NC were suspended in 100 µl serum-free DMEM and subcutaneously injected into the right rear flank of each mouse (n=10), respectively. Tumor volume (V) was measured every 5 days, and was calculated according to the formula: V = 0.5 x L (length) x W<sup>2</sup> (width). The mice were sacrificed 30 days after injection. The tumor tissues were dissected and weighed. Part of each tumor tissue was harvested and stored for analysis of the expression of XIAP and miR-874.

Statistical analysis. All data are expressed as means ± standard deviation (SD) from at least three independent experiments. Statistical analysis between two samples was performed using the Student's t-test, and analysis of more than two groups was performed using one-way ANOVA. Statistical analysis was performed using Statistical Package for Social Science (SPSS for Windows version 16.0; SPSS, Inc., Chicago, IL, USA). A P-value <0.05 was considered to indicate a statistically significant result.

Results

miR-874 is downregulated in CRC tissues and cell lines. The expression levels of miR-874 were detected by RT-qPCR in 32 pairs of CRC tissues and their matched adjacent tissues. miR-874 expression levels were significantly decreased in the CRC tissues when compared with these levels in the adjacent normal tissues (P<0.01; Fig. 1A). To further investigate the clinical significance of miR-874 in CRC, 32 patients were divided into two groups: a high expression group (>0.46, n=17) and a low expression group (<0.46, n=15), according
to the median value (0.46) of the miR-874 expression level in the CRC tissues. The results showed that the level of miR-874 expression was significantly negatively correlated with lymph node metastasis (P<0.01) and TNM stage (P<0.01) (Table I), which are indicators of poor prognosis. However, there were no significant correlations between miR-874 expression and other factors including patient age and gender, and tumor size. In addition, the expression levels of miR-874 were quantified in four human CRC cell lines and a normal colonic cell line (NCM460) by RT-qPCR. The expression level of miR-874 was obviously downregulated in the CRC cell lines compared to the normal colonic cell line (NCM460) (Fig. 1B). Additionally, the expression level of miR-874 in the SW480 cell line was the lowest among the four cell lines; thus, the SW480 cell line was selected for subsequent study. These results suggest that miR-874 plays crucial roles in CRC progression.

Restoration of miR-874 inhibits CRC cell proliferation and colony formation and induces cell apoptosis. To assess the biological effects of miR-874 on CRC cells, the miR-874 mimic was transfected into the SW480 cells. The transfection of miR-874 was successful, and a significant increase in the miR-874 expression level was achieved in the SW480 cells (Fig. 2A). Then, cell proliferation, colony formation and apoptosis were investigated in the SW480 cells after transfection with miR-874 mimic or miR-NC. The results showed that restoration of miR-874 expression significantly inhibited cell proliferation (Fig. 2B) and colony formation (Fig. 2C), as well as induced cell apoptosis (Fig. 2D) in the SW480 cells.

Restoration of miR-874 decreases the resistance of CRC cells to 5-FU. It has been shown that various miRNAs can improve or decrease the resistance of cancer cells to chemotherapeutic agents. Thus, we tested whether miR-874 affects the resistance
of CRC cells to 5-FU. SW480 cells were transfected with the miR-874 mimic or miR-NC for 48 h, followed by exposure to different concentrations of 5-FU for an additional 48 h. Cell proliferation was then determined using MTT assay. As shown in Fig. 3A, restoration of miR-874 reduced the resistance of SW480 cells to 5-FU compared to that in the miR-NC group. Compared with the IC_{50} value of 5-FU in the miR-NC group (5.68±0.38 µg/ml), restoration of miR-874 significantly decreased the IC_{50} value of 5-FU in the SW480 cells (2.69±0.21 µg/ml) (Fig. 3B). In addition, we also investigated the effect on colony formation and apoptosis in the miR-874-overexpressing cells exposed to an IC_{50} (2.69 µg/ml) concentration of 5-FU. We found that the miR-874 mimic in combination with 5-FU treatment in the SW480 cells significantly decreased colony formation (Fig. 3C), and induced cell apoptosis (Fig. 3D) compared to single 5-FU treatment. These findings suggest that restoration of miR-874 decreased CRC cell resistance to 5-FU.

**XIAP** is a direct target of miR-874. As the putative binding site of miR-874 in the mRNA 3'UTR region of XIAP was predicted using bioinformatic databases (TargetScan, PicTar) (Fig. 4A), a dual-luciferase assay was performed to determine the direct link between XIAP and miR-874. We found that luciferase activity was significantly reduced by the miR-874 mimic in the Wt XIAP group, while the miR-874 mimic had no effect on luciferase activity in the SW480 cells transfected with the mutated type (Mut) XIAP 3'UTR (Fig. 4B). Additionally, the expression of XIAP at the mRNA and protein levels was determined in the SW480 cells after transfection with miR-874 by RT-qPCR and western blotting, respectively. The expression of XIAP at the mRNA (Fig. 4C) and protein level (Fig. 4D) was inhibited in the SW480 after transfection with the miR-874 mimic. These results suggest that XIAP is a direct target of miR-874.

**XIAP expression is upregulated and inversely correlated with miR-874 expression in the CRC tissues.** As XIAP was identified as the target of miR-874, we detected the expression of XIAP in the CRC and adjacent non-tumor tissues. The expression of XIAP at the mRNA (Fig. 5A) and protein level (Fig. 5B) was greatly increased in the CRC tissues when compared to these levels in the adjacent non-tumor tissues. Meanwhile, the correlation of miR-874 and XIAP expression was also investigated in the CRC tissues. Spearman's correlation analysis showed that XIAP expression at the mRNA level was inversely related to the expression of miR-874 (Fig. 5C; r=−0.540; P<0.01). In addition, XIAP protein expression was
also detected in four human CRC cell lines and a normal colonic cell line (NCM460) by western blotting. The results showed that XIAP protein expression was obviously upregulated in the CRC cell lines compared to that in the normal colonic NCM460 cell line (Fig. 5D).

Downregulation of XIAP exhibits an effect similar with that of miR-874 overexpression in the CRC cells. To investigate the biological functions of XIAP in CRC cells, endogenous expression of XIAP was downregulated in the SW480 cells with specific siRNA against XIAP (pSi-XIAP). RT-qPCR and western blot assay confirmed that XIAP expression at the mRNA (Fig. 6A) and protein level (Fig. 6B) was significantly inhibited in the SW480 cells transfected with the miR-874 mimics or miR-NC. GAPDH was used as an internal control. *P<0.01 vs. miR-NC.

We found that the xenograft tumor weight in the SW480/miR-874 group was significantly smaller than that determined in the SW480/miR-NC group. At five weeks post-injection, the mice were sacrificed, and tumor tissues were stripped and weighed. We also detected that XIAP protein expression was obviously upregulated in the CRC cell lines compared to that in the normal colonic NCM460 cell line (Fig. 5D).

**Discussion**

Accumulating evidence suggests that miRNAs may serve as effective molecular biomarkers for cancer diagnosis, prognosis and therapy (8,9). A number of miRNAs have been shown to be aberrantly expressed in colorectal cancer (CRC) and play crucial roles in cancer cell growth, metastasis and proliferation (10-12). For example, Sheng et al (19) reported that miR-612 inhibited cell proliferation and migration mainly by inhibiting AKT2 in vitro and in vivo in CRC. Chen et al showed that miR-124 and miR-506 inhibited the progression and increased sensitivity to chemotheray by targeting DNMT3B and DNMT1 in CRC (20). Ren et al demonstrated that miR-206 was downregulated in CRC and impaired proliferation, invasion and metastasis of CRC cells by inhibiting FMNL2 (21). In the present study, we investigated the biological role of miR-874 in CRC. We found that miR-874 was downregulated in CRC cell lines and tissues, and its expression was significantly negatively correlated with lymph node metastasis and TNM stage. We also found that overex-
Figure 5. XIAP expression is upregulated and inversely correlated with miR-874 expression in CRC tissues. XIAP expression at the mRNA (A) and protein level (B) was detected in human CRC tissue samples and corresponding adjacent normal tissues. GAPDH was used as an internal control. **P<0.01 vs. normal tissue. (C) The inverse relationship between XIAP and miR-874 expression was explored in CRC tissue samples by Spearman's correlation assay. (D) Western blot analysis of the relative expression of XIAP in four CRC cell lines compared with the normal colonic cell line (NCM460).

Figure 6. Downregulation of XIAP mimicked the effect of miR-874 overexpression in the CRC cells. XIAP expression at the mRNA (A) and protein level (B) was determined in the SW480 cells transfected with pSi-XIAP or pSi-NC. GAPDH was used as an internal control. Cell proliferation (C), colony formation (D) and apoptosis (E) were determined in SW480 cells transfected with pSi-XIAP or pSi-NC. (F) MTT assay was used to analyzed changes in IC50 values (5-FU) in the SW480 cells after transfection with pSi-XIAP or pSi-NC. *P<0.01 compared to pSi-NC.
HAN et al: MicroRNA-874 INHIBITS CRC GROWTH BY TARGETING XIAP

miR-874, located on chromosome 5q31.2, has been reported to be involved in cancer progression and development and to function as a tumor suppressor in several types of cancers, such as gastric (13,14), breast (15) and non-small cell lung cancer (NSCLC) (16), maxillary sinus squamous cell carcinoma (17), and head and neck squamous cell carcinoma (HNSCC) cell lines (22). However, the detailed biological function and underlying molecular mechanism of miR-874 in CRC remain unclear. In the present study, we found that miR-874 expression levels were downregulated in CRC tissues and cell lines, and that restoration of miR-874 suppressed tumor growth in vitro and in vivo by targeting XIAP. These results indicate that miR-874 may function as a tumor suppressor in CRC.

XIAP, an important member of the IAP family proteins, has been found to inhibit the activities of caspase-3, -7 and -9, leading to inhibition of apoptosis (23). Accumulating evidence suggests that the expression of XIAP is elevated and XIAP functions as an oncogene in various types of cancers, including CRC (24,25). It has been shown that downregulation of XIAP inhibited cancer cell proliferation and induced apoptosis, as well as sensitized cancer cells to chemotherapeutic agents (25-28). In the present study, we confirmed that XIAP is a direct target of miR-874 in CRC cells by luciferase activity. RT-qPCR and western blot assays demonstrated that overexpression of miR-874 inhibited XIAP expression at the mRNA and protein levels. Moreover, our results showed that XIAP expression was upregulated in CRC cell lines and tissues, and its expression was inversely related to the expression of miR-874. Notably, our results showed that downregulation of XIAP had an effect similar to that of the miR-874 mimic in the CRC cells. These results suggest that miR-874 inhibits proliferation, induces cell apoptosis in vitro, and suppresses tumor growth in vivo partially by targeting XIAP.

5-Fluorouracil (5-FU), an important chemotherapeutic agent, is most widely used alone or combined with other drugs in CRC treatment (29). Despite the fact that adjuvant 5-FU treatment has achieved a high success rate, the failure of treatment in over 90% of patients with metastatic cancer is due to drug resistance, which limits its use (30). Increasing evidence indicates that miRNAs are associated with 5-FU sensitivity/resistance in various tumor cell lines including CRC cells (31-33). Notably, XIAP has been regarded as one of the most important factors involved in resistance to the apoptotic effects of drugs and radiation in tumor cells (28). In the present study, our results showed that overexpression of miR-874 decreased 5-FU resistance in CRC cells. We also found that downregulation of XIAP decreased 5-FU resistance.

Figure 7. miR-874 inhibits CRC tumor growth in vivo by inhibiting XIAP. (A) Tumor growth curves. (B) Tumor size and weight. (C) miR-874 expression in tumor tissues was determined by RT-qPCR. (D) XIAP protein expression in tumor tissue was determined by western blotting. GAPDH was used as an internal control. *P<0.01 vs. miR-NC.
in the CRC cells. These results suggest that miR-874 decreased 5-FU resistance in CRC cells by suppressing XIAP.

In summary, the present study provides evidence that miR-874 expression is downregulated in CRC cell lines and tissues, and its expression is significantly correlated with lymph node metastasis and TNM stage. In addition, the present study also showed that restoration of miR-874 impaired cell proliferation and colony formation, induced cell apoptosis and decreased 5-FU resistance in vitro, as well as suppressed tumor growth in vivo by partially inhibiting XIAP, suggesting that miR-874 may be a novel candidate for CRC therapeutics. The results of the present study may contribute to enhance our understanding of the regulation of CRC development and provide potential new therapeutic targets for CRC treatment.

Acknowledgements

The present study was supported by the Health Department of Jilin Province (2010S020).

References