MicroRNA-362 is downregulated in cervical cancer and inhibits cell proliferation, migration and invasion by directly targeting SIX1

  • Authors:
    • Can Shi
    • Zhenyu Zhang
  • View Affiliations

  • Published online on: November 15, 2016     https://doi.org/10.3892/or.2016.5242
  • Pages: 501-509
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Cervical cancer is the second most common type of cancer in women accounting for 12% of all human cancers in the world. Mounting evidence demonstrates that microRNAs play important roles in the carcinogenesis and progression of cervical cancer. The aim of this study was to investigate the expression, roles and molecular mechanism of microRNA-362 (miR-362) in cervical cancer. According to the results, we found that expression level of miR-362 was significantly reduced in cervical cancer tissues and cell lines. Low miR-362 expression was correlated with FIGO stage, lymph node metastasis and vascular invasion in cervical cancer. Functional assays showed that restoration of miR-362 repressed cell proliferation, migration and invasion in cervical cancer. We also provided direct evidence that sineoculis homeobox homolog 1 (SIX1) was a direct target of miR-362 in cervical cancer, which was confirmed by bioinformatics analysis, luciferase reporter assay, qRT-PCR and western blot analysis. SIX1 was upregulated in cervical cancer and inversely correlated with miR‑362 expression in cervical cancer. In addition, SIX1 knockdown could simulate the roles of miR-362 overexpression on cell proliferation, migration and invasion of cervical cancer. Moreover, rescue experiments indicated that restoration of SIX1 was sufficient to abolish proliferation, migration and invasion induced by miR-362 overexpression in cervical cancer cells. The newly identified miR-362/SIX1 pathway provides insight into cervical cancer progression, and may represent a novel therapeutic target.

References

1 

Dasari S, Wudayagiri R and Valluru L: Cervical cancer: Biomarkers for diagnosis and treatment. Clin Chim Acta. 445:7–11. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Arbyn M, Castellsagué X, de Sanjosé S, Bruni L, Saraiya M, Bray F and Ferlay J: Worldwide burden of cervical cancer in 2008. Ann Oncol. 22:2675–2686. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Bosch FX and de Sanjosé S: Chapter 1: Human papillomavirus and cervical cancer - burden and assessment of causality. J Natl Cancer Inst Monogr. 2003:3–13. 2003. View Article : Google Scholar

5 

Yu Y, Zhang Y and Zhang S: MicroRNA-92 regulates cervical tumorigenesis and its expression is upregulated by human papillomavirus-16 E6 in cervical cancer cells. Oncol Lett. 6:468–474. 2013.PubMed/NCBI

6 

Yee GP, de Souza P and Khachigian LM: Current and potential treatments for cervical cancer. Curr Cancer Drug Targets. 13:205–220. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Wang F, Liu M, Li X and Tang H: MiR-214 reduces cell survival and enhances cisplatin-induced cytotoxicity via down-regulation of Bcl2l2 in cervical cancer cells. FEBS Lett. 587:488–495. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Dizon DS, Mackay HJ, Thomas GM, Werner TL, Kohn EC, Hess D, Rose PG and Covens AL: State of the science in cervical cancer: Where we are today and where we need to go. Cancer. 120:2282–2288. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Du J, Wang L, Li C, Yang H, Li Y, Hu H, Li H and Zhang Z: MicroRNA-221 targets PTEN to reduce the sensitivity of cervical cancer cells to gefitinib through the PI3K/Akt signaling pathway. Tumour Biol. 37:3939–3947. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Zhou Q, Han LR, Zhou YX and Li Y: MiR-195 suppresses cervical cancer migration and invasion through targeting Smad3. Int J Gynecol Cancer. 26:817–824. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Wang X and Xia Y: microRNA-328 inhibits cervical cancer cell proliferation and tumorigenesis by targeting TCF7L2. Biochem Biophys Res Commun. 475:169–175. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Dai S, Lu Y, Long Y, Lai Y, Du P, Ding N and Yao D: Prognostic value of microRNAs in cervical carcinoma: A systematic review and meta-analysis. Oncotarget. 7:35369–35378. 2016.PubMed/NCBI

13 

Ambros V: The functions of animal microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI

14 

Inui M, Martello G and Piccolo S: MicroRNA control of signal transduction. Nat Rev Mol Cell Biol. 11:252–263. 2010. View Article : Google Scholar : PubMed/NCBI

15 

He L and Hannon GJ: MicroRNAs: Small RNAs with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004. View Article : Google Scholar : PubMed/NCBI

16 

Valencia-Sanchez MA, Liu J, Hannon GJ and Parker R: Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 20:515–524. 2006. View Article : Google Scholar : PubMed/NCBI

17 

Winter J, Jung S, Keller S, Gregory RI and Diederichs S: Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 11:228–234. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Aigner A: MicroRNAs (miRNAs) in cancer invasion and metastasis: Therapeutic approaches based on metastasis-related miRNAs. J Mol Med (Berl). 89:445–457. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Rottiers V and Näär AM: MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 13:239–250. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Cho WC: MicroRNAs: Potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int J Biochem Cell Biol. 42:1273–1281. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Wu D, Zhou Y, Pan H, Zhou J, Fan Y and Qu P: microRNA-99a inhibiting cell proliferation, migration and invasion by targeting fibroblast growth factor receptor 3 in bladder cancer. Oncol Lett. 7:1219–1224. 2014.PubMed/NCBI

22 

Zheng L, Jiao W, Mei H, Song H, Li D, Xiang X, Chen Y, Yang F, Li H, Huang K, et al: miRNA-337-3p inhibits gastric cancer progression through repressing myeloid zinc finger 1-facilitated expression of matrix metalloproteinase 14. Oncotarget. 7:40314–40328. 2016.PubMed/NCBI

23 

Gao M, Liu L, Li S, Zhang X, Chang Z and Zhang M: Inhibition of cell proliferation and metastasis of human hepatocellular carcinoma by miR-137 is regulated by CDC42. Oncol Rep. 34:2523–2532. 2015.PubMed/NCBI

24 

Fan D, Wang Y, Qi P, Chen Y, Xu P, Yang X, Jin X and Tian X: MicroRNA-183 functions as the tumor suppressor via inhibiting cellular invasion and metastasis by targeting MMP-9 in cervical cancer. Gynecol Oncol. 141:166–174. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Li J, Hu L, Tian C, Lu F, Wu J and Liu L: microRNA-150 promotes cervical cancer cell growth and survival by targeting FOXO4. BMC Mol Biol. 16:242015. View Article : Google Scholar : PubMed/NCBI

26 

Song X, Shi B, Huang K and Zhang W: miR-133a inhibits cervical cancer growth by targeting EGFR. Oncol Rep. 34:1573–1580. 2015.PubMed/NCBI

27 

Deng B, Zhang Y, Zhang S, Wen F, Miao Y and Guo K: MicroRNA-142-3p inhibits cell proliferation and invasion of cervical cancer cells by targeting FZD7. Tumour Biol. 36:8065–8073. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Zheng W, Liu Z, Zhang W and Hu X: miR-31 functions as an oncogene in cervical cancer. Arch Gynecol Obstet. 292:1083–1089. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Ni F, Gui Z, Guo Q, Hu Z, Wang X, Chen D and Wang S: Downregulation of miR-362-5p inhibits proliferation, migration and invasion of human breast cancer MCF7 cells. Oncol Lett. 11:1155–1160. 2016.PubMed/NCBI

30 

Yang P, Ni F, Deng RQ, Qiang G, Zhao H, Yang MZ, Wang XY, Xu YZ, Chen L, Chen DL, et al: MiR-362-5p promotes the malignancy of chronic myelocytic leukaemia via down-regulation of GADD45α. Mol Cancer. 14:1902015. View Article : Google Scholar : PubMed/NCBI

31 

Ni F, Zhao H, Cui H, Wu Z, Chen L, Hu Z, Guo C, Liu Y, Chen Z, Wang X, et al: MicroRNA-362-5p promotes tumor growth and metastasis by targeting CYLD in hepatocellular carcinoma. Cancer Lett 356B. 809–818. 2015. View Article : Google Scholar

32 

Xia JT, Chen LZ, Jian WH, Wang KB, Yang YZ, He WL, He YL, Chen D and Li W: MicroRNA-362 induces cell proliferation and apoptosis resistance in gastric cancer by activation of NF-κB signaling. J Transl Med. 12:332014. View Article : Google Scholar : PubMed/NCBI

33 

Wu K, Yang L, Chen J, Zhao H, Wang J, Xu S and Huang Z: miR-362-5p inhibits proliferation and migration of neuroblastoma cells by targeting phosphatidylinositol 3-kinase-C2β. FEBS Lett. 589:1911–1919. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Behbakht K, Qamar L, Aldridge CS, Coletta RD, Davidson SA, Thorburn A and Ford HL: Six1 overexpression in ovarian carcinoma causes resistance to TRAIL-mediated apoptosis and is associated with poor survival. Cancer Res. 67:3036–3042. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Li Z, Tian T, Hu X, Zhang X, Nan F, Chang Y, Lv F and Zhang M: Six1 mediates resistance to paclitaxel in breast cancer cells. Biochem Biophys Res Commun. 441:538–543. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Kahlert C, Lerbs T, Pecqueux M, Herpel E, Hoffmeister M, Jansen L, Brenner H, Chang-Claude J, Bläker H, Kloor M, et al: Overexpression of SIX1 is an independent prognostic marker in stage I–III colorectal cancer. Int J Cancer. 137:2104–2113. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Wei Q, Yu WW, Zhao KL, Fu XL, Zhu ZF, Qin GQ, Chen H, Zhang ZX, Gu YZ, Xiang JQ, et al: Expression of Six1 and Six4 in esophageal squamous cell carcinoma and their correlation with clinical prognosis. Zhonghua Bing Li Xue Za Zhi. 42:446–450. 2013.(In Chinese). PubMed/NCBI

38 

Li Z, Tian T, Lv F, Chang Y, Wang X, Zhang L, Li X, Li L, Ma W, Wu J, et al: Six1 promotes proliferation of pancreatic cancer cells via upregulation of cyclin D1 expression. PLoS One. 8:e592032013. View Article : Google Scholar : PubMed/NCBI

39 

Tan J, Zhang C and Qian J: Expression and significance of Six1 and Ezrin in cervical cancer tissue. Tumour Biol. 32:1241–1247. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Zheng XH, Liang PH, Guo JX, Zheng YR, Han J, Yu LL, Zhou YG and Li L: Expression and clinical implications of homeobox gene Six1 in cervical cancer cell lines and cervical epithelial tissues. Int J Gynecol Cancer. 20:1587–1592. 2010.PubMed/NCBI

41 

Wang CA, Jedlicka P, Patrick AN, Micalizzi DS, Lemmer KC, Deitsch E, Casás-Selves M, Harrell JC and Ford HL: SIX1 induces lymphangiogenesis and metastasis via upregulation of VEGF-C in mouse models of breast cancer. J Clin Invest. 122:1895–1906. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Ono H, Imoto I, Kozaki K, Tsuda H, Matsui T, Kurasawa Y, Muramatsu T, Sugihara K and Inazawa J: SIX1 promotes epithelial-mesenchymal transition in colorectal cancer through ZEB1 activation. Oncogene. 31:4923–4934. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

January 2017
Volume 37 Issue 1

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Shi, C., & Shi, C. (2017). MicroRNA-362 is downregulated in cervical cancer and inhibits cell proliferation, migration and invasion by directly targeting SIX1. Oncology Reports, 37, 501-509. https://doi.org/10.3892/or.2016.5242
MLA
Shi, C., Zhang, Z."MicroRNA-362 is downregulated in cervical cancer and inhibits cell proliferation, migration and invasion by directly targeting SIX1". Oncology Reports 37.1 (2017): 501-509.
Chicago
Shi, C., Zhang, Z."MicroRNA-362 is downregulated in cervical cancer and inhibits cell proliferation, migration and invasion by directly targeting SIX1". Oncology Reports 37, no. 1 (2017): 501-509. https://doi.org/10.3892/or.2016.5242