2-Methoxyestradiol inhibits the proliferation and migration and reduces the radioresistance of nasopharyngeal carcinoma CNE-2 stem cells via NF-κB/HIF-1 signaling pathway inactivation and EMT reversal

SHUN-LONG WU1*, YA-JUN LI2,3*, KUI LIAO1, LEI SHI1, NA ZHANG5, SHUANG LIU5, YAO-YAO HU4, SHAO-LIN LI5 and YING WANG6

1Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016; 2Zunyi Medical College, Zunyi, Guizhou 563000; 3Department of Oncology, The Third Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563002; 4Department of Oncology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000; 5Department of Oncology and Radiation Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400016; 6Department of Radiotherapy, Chongqing Cancer Institute, Chongqing 400030, P.R. China

Received April 17, 2016; Accepted May 31, 2016

DOI: 10.3892/or.2016.5319

Correspondence to: Dr Ying Wang, Department of Radiotherapy, Chongqing Cancer Institute, 181 Hanyu Road, Chongqing 400030, P.R. China
E-mail: wangying_cq@hotmail.com

*Contributed equally

Key words: nasopharyngeal carcinoma, cancer stem cells, NF-κB p65, 2-methoxyestradiol, radiosensitivity

Abstract. Accumulating evidence indicates that cancer stem cells (CSCs) are a source of resistance to radiation therapy (RT); however, the mechanism of this resistance remains unclear. 2-Methoxyestradiol (2-ME2) is a metabolic product of estrogen in the body. Recent studies have found that 2-ME2 regulates the activation of transcription factors, including nuclear factor (NF)-κB/hypoxia-inducible factor-1 (HIF-1), thus contributing to tumor cell apoptosis and chemosensitivity. Therefore, 2-ME2 is being studied as a potential anticancer drug. The purpose of this study was to determine the effect and mechanism by which 2-ME2 inhibits nasopharyngeal carcinoma CNE-2 stem-like cell (NPCSC) proliferation and migration and reduces NPCSC radioresistance. This study has important significance for reducing the radioresistance of these cells to improve the cure rate of NPC. First, the NPCSCs were collected in a serum-free culture system and then identified by relevant experiments. The NPCSCs were treated with 2-ME2 (0-8 µM) combined with X-ray exposure and Cell Counting Kit-8 (CCK-8), Transwell assay, colony formation assay, western blot analysis, RT-PCR, flow cytometry and RNA interference technology were used to explore the effect and mechanism of 2-ME2 on NPCSCs. The results showed that the microspheres collected in the serum-free culture system possessed CSC traits and radioresistance. 2-ME2 obviously inhibited NPCSC growth and migration and reduced NPCSC radioresistance. 2-ME2 decreased NF-κBp65 and HIF-1α protein expression, downregulated NF-κBp65 nuclear localization, and reversed epithelial-mesenchymal transition (EMT). NF-κB p65 knockdown reduced HIF-1α expression, reversed EMT, and enhanced the suppressive effect of 2-ME2 on NPCSCs. Collectively, these data indicate that 2-ME2 inhibits NPCSC proliferation and migration and reduces the radioresistance of NPCSCs via NF-κB/HIF-1 signaling pathway inactivation and EMT reversal.

Introduction

Nasopharyngeal carcinoma (NPC) is a type of malignant tumor that originates in the nasopharyngeal epithelium. The primary treatment method for NPC is radiation therapy (1,2). NPC is sensitive to radiation; however, according to the cancer stem cell (CSC) theory, NPC stem cells (NPCSCs) are resistant to radiation (3-5). Many factors, including nuclear factor (NF)-κB (6) and hypoxia-inducible factor-1 (HIF-1) (7), which are overexpressed in cells under hypoxic conditions, contribute to the radioresistance of CSCs (8,9).

NF-κB, a nuclear transcription factor, is overexpressed in various cancers containing NPCs, and p65 is a key subunit required for functional NF-κB activity (10,11). Previous studies have found that NF-κB regulates epithelial-mesenchymal transition (EMT), thus contributing to cancer occurrence and progression (12). Decreased protein expression of the epithelium marker E-cadherin (E-cad) and increased protein expression of N-cadherin (N-cad) and vimentin are direct evidence of the occurrence of EMT (13). 2-Methoxyestradiol (2-ME2), an endogenous estradiol metabolite, is being investigated in clinical trials as an anticancer agent (14). 2-ME2 regulates NF-κB activation to influence apoptosis and chemoresistance.
in various tumor cell lines, including leukemia K562 cells (15), medulloblastoma cells (16), prostate cancer cells (17) and pancreatic cancer cells (18). Thus, we speculated that 2-ME2 may play a vital role in the proliferation, migration and radioreistance of NPCSCs via the regulation of NF-κB p65 activity.

Solid tumors generally have a hypoxic microenvironment (19). HIF-1α, a unique subunit of HIF-1, which functions in the cellular response to oxygen levels and which is over-expressed in solid tumors, is closely associated with CSC resistance to treatment (20-22). A previous study found that 2-ME2 decreased the HIF-1α-binding activity, affected the expression of downstream genes, inhibited tumor growth andangiogenesis and augments paclitaxel efficacy in head and neck squamous cell carcinoma (23). However, whether 2-ME2 affects NPCSC proliferation, migration and treatment resistance through the regulation of HIF-1α remains unclear.

The objective of this study was to determine the antitumor effects of 2-ME2 on NPCSCs and to demonstrate the underlying mechanism involved in the antitumor effects of 2-ME2 through the suppression of the NF-κB/HIF-1 signaling pathway. 2-ME2 could potentially become a novel radiotherapy sensitization agent for clinical use.

Materials and methods

Reagents. The human NPC cell line CNE-2 was obtained from the Tumor Laboratory of Chongqing Medical University (Chongqing, China). Penicillin-streptomycin (1%), fetal bovine serum (FBS), RPMI-1640 culture medium and Dulbecco's modified Eagle's medium/F12 (DMEM/F12; 1:1 volume) were purchased from Gibco (Grand Island, NY, USA). B27 supplement (2%) was purchased from Invitrogen (Carlsbad, CA, USA). Accutase was purchased from Innovative Cell Technologies, Inc. (San Diego, CA, USA). Human recombinant basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) were purchased from Peprotech, Inc. (Rocky Hill, NJ, USA). 2-ME2 was purchased from Selleck Chemicals (Shanghai, China). Real-time polymerase chain reaction (RT-PCR) kits were purchased from Takara Biotechnology Co., Ltd. (Dalian, China). Transwell chambers with an 8-µm aperture were purchased from Beijing Mingyangkehua Biotechnology Co., Ltd. (Beijing, China). Anti-CD133-PE antibody for flow cytometry (FCM) was purchased from Miltenyi Biotec (Beijing, China). The lentiviral vector encoding NF-κB p65-shRNA (pMAGic 7.1) was obtained from Shanghai Sunbio Co. (Shanghai, China). Mouse anti-human primary antibodies directed against NF-κB p65, lamin B1, vimentin, E-cad, and N-cad were purchased from Cell Signaling Technology, Inc. (Beverly, MA, USA). The mouse anti-human primary antibodies directed against HIF-1α and GAPDH and secondary goat anti-mouse IgG antibody were purchased from Wuhan Boster Biological Engineering Co., Ltd. (Wuhan, China). A modified BCA protein assay kit, an allergic ECL chemiluminescence reagent kit and an SDS-PAGE gel preparation kit were purchased from Beyotime Biotech (Jiangsu, China). Cell proliferation-toxicity testing kits [Cell Counting Kit-8 (CCK-8)] were purchased from Dojindo Laboratories Co., Ltd. (Kumamoto, Japan). An inverted fluorescence microscope was obtained from Nikon Corporation (Tokyo, Japan), an upright fluorescence microscope was obtained from Olympus Corp. (Tokyo, Japan), a flow cytometer was obtained from Bio-Rad Laboratories, Inc. (Hercules, CA, USA), and a linear accelerator for radiotherapy was obtained from Varian Medical Systems, Inc. (Palo Alto, CA, USA).

Cell culture. To culture the parental CNE-2 cell lines, CNE-2 cells were cultured in RPMI-1640 supplemented with 1% penicillin-streptomycin and 10% FBS, placed in an incubator with 5% CO2 at 37°C, and passed every other day.

To enrich stem-like cells, a non-adhesive culture system of serum-free medium (SFM) consisting of DMEM/F12 supplemented with 20 ng/ml bFGF, 20 ng/ml EGF, 2% B27 supplement and 1% penicillin-streptomycin was used to collect NPCSCs. The parental CNE-2 cells were re-suspended in T25, placed vertically in an incubator, shaken several times a day, and passed every 4-6 days until the cells formed microspheres.

To culture the NPCSCs, the microsphere suspension was cultured in SFM and passed every 4-6 days. When the cells were passaged, the tumor spheroids were dissociated with Accutase into single cells, transferred to new T25 containing new SFM, and placed in an incubator with 5% CO2 at 37°C.

NPCSC re-differentiation assay. NPCSCs were collected, dissociated into single cells with Accutase, seeded in a 6-well plate with RPMI-1640 containing 10% FBS, and placed in an incubator with 5% CO2 at 37°C. After 3-5 days, the changes in cellular morphology were observed using an inverted microscope.

Transwell migration assay. The parental CNE-2 cells and the NPCSCs were dissociated into single cells that were then re-suspended (2x105 cells/ml) in SFM. The upper chamber was loaded with a 100-µl cell suspension, and the lower chamber was loaded with a 500 µl 10% serum-containing medium. The cells were fixed after 24 h with methanol and stained with crystal violet. Five random fields were analyzed, and the number of cells invading through the membrane was counted under a microscope (Olympus Corp.). Three independent experiments were performed.

Soft agar colony assay. The parental cells and the NPCSCs were dissociated into single cells and then re-suspended (105 cells/ml) with SFM in 0.3% agar overlaid in 6-well plates (2 ml/well) containing a 0.6% agar base. After the cells were incubated for 3 weeks, the spheroids>0.2 mm in diameter were evaluated using fluorescence microscopy. Three independent experiments were performed.

RT-PCR. To quantify gene expression, RT-PCR was performed with SYBR-Green. In brief, an RNAiso reagent was used to extract total RNA, and a reverse transcriptase kit was used to synthesize the cDNA according to the manufacturer's instructions. Then, PCR was performed. The expression levels of target genes relative to GAPDH were determined using a SYBR-Green-based comparative CT method (relative fold-change, 2 ΔΔCT). The primers were designed by Sangon Biotech Co., Ltd. (Shanghai, China), and are as follows: NF-κB p65 forward, 5'-GGAGCACAGATACCACCAAGA-3' and
The NPCSCs are treated with 2-ME2 and grouped. The NPCSCs were dispersed into single cells, suspended in pre-made 4, 8 and 0 µM (control) 2-ME2 solution and then plated in an incubator with 5% CO2 at 37°C for 24 h.

Colonies formation assay. Cells that had been treated with 2-ME2 for 24 h or that were in the early log phase were dispersed, plated in 6-well plates at 200, 400, 800 and 2,000 cells/well and then treated with 0, 2, 4 and 8 Gy irradiation. The cells were incubated for 12 days to allow colony formation. Subsequently, the cells were fixed and stained with 0.5% crystal violet, and the number of colonies containing >50 cells was counted. Survival curves were fitted using the multi-target click model in Graphpad Prism 5.0 software. Each point on the survival curve represents the mean survival fraction (SF) from at least three independent experiments.

Flow cytometric assay. The expression of CD133+, a surface marker of CSCs, was analyzed using FCM. The cells were dissociated into single cells, washed and re-suspended in PBS. Then, the cells were collected, adjusted to 1x10^6 cells/group, and incubated with the appropriate concentration of anti-CD133-PE (Miltenyi Biotec). The proportion of CD133+ cells in each sample was detected by FCM.

Western blot analysis. Cytoplasmic or total protein extraction and sample preparation for western blot analysis were carried out as previously described (24). The membranes were then incubated with one or more of the following primary antibodies: anti-NF-kB p65, anti-lamin B1, anti-E-cad, anti-N-cad, and anti-vimentin (all 1:1,000), as well as anti-GAPDH and anti-HIF-1α (each 1:200). The proteins of interest were then permeabilized with 0.1% Triton X-100 and blocked with 10% BSA. The slides were incubated overnight at 4°C with mouse anti-NF-kB p65 followed by incubation with secondary fluorescein-conjugated antibodies [goat anti-mouse-IgG, tetraethyl rhodamine isothiocyanate (TRITC)] at room temperature for 1 h. The slides were counterstained with 4'-6-diamidino-2-phenylindole (DAPI) and analyzed under a fluorescence microscope. Three independent experiments were performed.

Statistical analysis. The values are expressed as the mean ± standard deviation (SD). Differences between groups were analyzed by Student’s t-tests. Differences among three groups were analyzed using one-way ANOVA, and differences between any two groups were analyzed using least significant difference (LSD) tests. All statistical analyses were performed using SPSS version 16.0 for Windows. Values of *p<0.05 were considered significant, and values of **p<0.01 were considered very significant.

Results

NPCSCs which were derived from CNE-2 cells acquired stem-like characteristics and radioresistance. The parental CNE-2 cells were cultured and routinely passaged in RPMI-1640 medium containing 10% FBS (Fig. 1A left, upper panel). Cells formed microspheres in the SFM approximately 8-10 days after being suspended (Fig. 1A right, upper panel). The microspheres maintained a strong ability to grow after repeated passages (Fig. 1A left, panel below) and differentiated into spindle adherent cells when re-cultured in medium containing 10% FBS (Fig. 1A right, panel below). These data demonstrated that the spherical cells have strong self-renewal and differentiation abilities. These abilities were subsequently identified as stem cell characteristics of NPCSCs. To identify the stem cell characteristics of the spherical cells, soft agar cloning and Transwell assays were used to detect the self-renewal and migration abilities, respectively, of these cells in vitro. The number of CNE-2 colonies was significantly reduced compared with the number of spherical cells (Fig. 1B; p<0.01). The number of CNE-2 cells that migrated to the other side of the membrane was significantly decreased compared with the number of spherical cells that migrated (Fig. 1C; p<0.01). The cell surface antigen CD133+ was used as a CSC-specific marker, and the proportion of CD133+ cells was detected by FCM. The results revealed that the proportion of CD133+ cells was 85.2±5.88% for spherical cells and 1.47±0.45% for CNE-2 cells (p<0.01) (Fig. 1D). Several genes, including Bmi-1, Twist1 and Oct4, which are associated with CSC properties, were quantitatively analyzed by RT-PCR. We found that the expression levels of these genes were significantly increased in NPCSCs compared to parental CNE-2 cells. The NPCSCs have strong self-renewal and differentiation abilities. These abilities were subsequently identified as stem cell characteristics of NPCSCs. To identify the stem cell characteristics of the spherical cells, soft agar cloning and Transwell assays were used to detect the self-renewal and migration abilities, respectively, of these cells in vitro. The number of CNE-2 colonies was significantly reduced compared with the number of spherical cells (Fig. 1B; p<0.01). The number of CNE-2 cells that migrated to the other side of the membrane was significantly decreased compared with the number of spherical cells that migrated (Fig. 1C; p<0.01). The cell surface antigen CD133+ was used as a CSC-specific marker, and the proportion of CD133+ cells was detected by FCM. The results revealed that the proportion of CD133+ cells was 85.2±5.88% for spherical cells and 1.47±0.45% for CNE-2 cells (p<0.01) (Fig. 1D). Several genes, including Bmi-1, Twist1 and Oct4, which are associated with CSC properties, were quantitatively analyzed by RT-PCR. We found that the expression levels of these genes were significantly increased in NPCSCs compared to parental CNE-2 cells.
increased in spherical cells compared with those in the CNE-2 cells (Fig. 1E). Colony formation assay was used to investigate the radiosensitivity of the spherical cells. The survival curve of the SF was generated using GraphPad software with a multi-target single-hit model. This result demonstrated that the spherical cells were more resistant to radiation therapy compared with the CNE-2 cells (Fig. 1F). We concluded that the spherical cells presented strong stemness, and we used these cells in subsequent experiments as NPCSCs.

2-ME2 inhibits NPCSC proliferation and migration and reduces NPCSC radioresistance. The compact and spherical
growth of NPCSCs that had been treated with 2-ME2 for 24 h dispersed gradually with increasing concentrations of 2-ME2 (0-8 µM) for 24 h, as observed under an inverted microscope (Fig. 2A). A CCK-8 assay was used to detect cell proliferation. Cell proliferation clearly decreased with increasing concentrations of 2-ME2 (Fig. 2B). A Transwell assay was used to detect the migratory abilities of these cells. The numbers of cells crossing the membrane were 190±12, 96±7, and 37±5 (Fig. 2C) for the groups treated with 2-ME2 (0, 4, and 8 µM, respectively), which indicated that 2-ME2 inhibited NPCSC migration.

To determine the radiosensitivity effect of 2-ME2 on the NPCSCs, a colony formation assay was performed (Fig. 2D). As depicted in Fig. 2E, the shoulder area of the survival curves significantly narrowed, and the SFs at each dose (2, 4, and 8 Gy) decreased in a 2-ME2 concentration-dependent manner. The SER of the 4 and 8 µM groups was 1.20 (p<0.05) and 1.39 (p<0.05), respectively, indicating that 2-ME2 reduced NPCSC radioresistance.

2-ME2 decreases the proportion of CD133+ cells, inhibits the NF-κB p65/HIF-1α signaling pathway, and reverses EMT in NPCSCs. To determine the molecular mechanism of 2-ME2 inhibition of NPCSC growth and migration and the reduction of NPCSC radioresistance, FCM, cellular immunofluorescence, and western blot analyses were performed. The FCM results indicated that the proportion of CD133+ cells decreased significantly in the groups treated with higher concentrations of 2-ME2 (Fig. 3A), thus demonstrating that 2-ME2 may decrease NPCSC stemness. According to cellular immunofluorescence, the location of NF-κB p65 in
the nucleus is representative of significantly decreased activation (Fig. 3B). Furthermore, western blot analysis revealed that the protein expression of NF-κB p65 in the nucleus and cytoplasm and the protein expression of total HIF-1α...
were reduced (Fig. 3C and D), which indicated that the NF-κB/HIF-1 signaling pathway was inhibited. Additionally, the expression of the EMT marker E-cad increased, whereas the expression of N-cad and vimentin decreased (Fig. 3D), which indicated reversal of EMT. Based on these results, we concluded that 2-ME2 decreased the cell stemness, inhibited the NF-κB/HIF-1 signaling pathway, and reversed EMT in NPCSCs.

NF-κB p65 knockdown enhances the effect of 2-ME2 on NPCSCs. Lentiviral infection was performed in NPCSCs using a virus-shRNA-NF-κB p65 solution and stably transfected cell lines. NPCSCs transfected with the lentivirus-mediated RNA targeting NF-κB p65 (CSC-shR) and with the empty retroviral vector (CSC-NC) were also established (Fig. 4A). To investigate the role of NF-κB p65 in the effect of 2-ME2 on NPCSCs, CCK-8, Transwell, and colony formation assays were performed.

Figure 4. Nuclear factor-κB (NF-κB) p65 knockdown enhances the effect of 2-methoxyestradiol (2-ME2) on NPCSCs. (A) The negative control cancer stem cell (CSC)-NC (upper panel) and transfected control CSC-shR (lower panel) were observed under white light (left panel) and fluorescence (right panel) microscopy after 72 h (magnification, x200). (B) A CCK-8 assay demonstrated that NF-κB p65 knockdown enhanced the 2-ME2-induced inhibition of NPCSC proliferation. (C) Representative micrographs (left panel; magnification, x400) showing the migration of CSC-NC and CSC-shR after these cells were treated with 2-ME2 (0-8 µM); the quantification of the migrated cells is shown on the right. (D) A colony formation assay was used to measure the effect of NF-κB p65 on the radiosensitivity of NPCSCs treated with 2-ME2 (0-8 µM) after exposure to 2 Gy radiation. The data demonstrated that 2-ME2 inhibited NPCSC colony formation after radiation exposure in a dose-dependent manner; NF-κB p65 knockdown further enhanced the anti-radioresistance effects of 2-ME2 on NPCSCs. The data are expressed as the means ± SD of three independent experiments. *p<0.05; **p<0.01 compared with the respective negative controls.

NPCSCs, nasopharyngeal carcinoma stem-like cells.
were performed. The viability of the CSC-NC cells was significantly decreased in a 2-ME2 concentration-dependent manner. Additionally, NF-κB p65 knockdown enhanced the effect of 2-ME2 on NPCSCs (Fig. 4B). A Transwell assay was used to evaluate the migration of NF-κB p65-silenced NPCSCs in vitro. The number of CSC-shR cells that migrated to the other side of the membrane decreased more significantly with increasing concentrations of 2-ME2 compared to the CSC-NC (Fig. 4C). These results indicated that silencing of NF-κB p65 enhanced the effect of 2-ME2 on the proliferation and migration of NPCSCs. In addition, a colony formation assay was used to examine whether silencing of NF-κB p65 affected the anti-radiosensitivity of 2-ME2 on NPCSCs. The data showed that 2-ME2 reduced the radioresistance of NPCSCs and that NF-κB p65 further enhanced the anti-radiosensitivity effects of 2-ME2 (Fig. 4D).

NF-κB p65 knockdown suppresses HIF-1α mRNA and protein expression and reverses EMT in NPCSCs. RT-PCR and western blot analyses were used to explore the molecular mechanism involved in the effect of NF-κB p65 on NPCSCs. After NF-κB p65 knockdown, the mRNA and protein levels of p65 and HIF-1α were significantly decreased (Fig. 5A). The protein levels of the EMT markers N-cad and vimentin were decreased, whereas the protein level of E-cad was increased (Fig. 5B). These results suggested that NF-κB p65 knockdown inhibited HIF-1α and reversed EMT in NPCSCs.

Discussion

Previous studies have confirmed that CSCs can be collected quickly and efficiently in a serum-free culture system (25,26). Therefore, a serum-free culture system was used in this study. According to these stemness identification results, compared with the parental cells, the stem-like spherical cells presented suspended growth, limitless self-renewal and re-differentiation abilities, overexpression of stem-relevant genes, a higher proportion of CD133+ cells, stronger migration ability, and radioresistance. These results indicated that these stem-like spherical cells possess strong stemness, therefore, these cells were used in the subsequently described experiments as NPCSCs.

In the human body, 2-ME2 is an estrogen metabolite. The anticancer effect of 2-ME2 is currently being researched in studies (14). Recent studies have found that 2-ME2 regulates the cell cycle, apoptosis, transcription factor (including NF-κB, HIF-1) activation, and mitosis and that 2-ME2 plays an important role in the therapy resistance of malignant...
prostatic cancer, glioma, and head and neck squamous cell carcinoma (15-18, 23, 27, 28). However, the effect of 2-ME on NPCSCs remains unclear. Our study indicates that 2-ME inhibits NPCSC growth and migration and reduces NPCSC radioresistance.

NF-κB is overexpressed in almost all cancer cells and mediates multiple signaling pathways to contribute to cell proliferation and to treatment resistance (29-31). However, the role of NF-κB regulated by 2-ME in cancer progression is complex. 2-ME displays different effects on NF-κB activation in different types of cells. For example, 2-ME increased NF-κB activity in LNCaP cells, in contrast, 2-ME slightly decreased NF-κB activity in PC3 cells. 2-ME can increase NF-κB activity in tumor cell lines, however, whether this increase stimulates or antagonizes apoptosis appears to be dependent on the specific type of tumor cell (17). 2-ME modulation of the downregulation of glucocorticoid receptor (GR) levels is accompanied by NF-κB activation in 2-ME-responsive, but not in 2-ME-resistant, pancreatic cancer cells (32). 2-ME inhibits the proliferation and induces the apoptosis of leukemia K562 cells via inhibition of NF-κB activity (15). To determine the mechanism of the anticancer effect of 2-ME on NPCSCs, we evaluated the effect of 2-ME on NF-κB p65. The western blot analysis and cellular immunofluorescence results revealed that 2-ME (0-8 μM) reduced the nuclear and cytoplasmic protein expression and nuclear localization of NF-κB p65 at 24 h, which indicated that 2-ME inhibited NF-κB p65 activation in NPCSCs. We also found that HIF-1α protein expression was decreased in a 2-ME2 concentration-dependent manner. In addition, evidence suggests that 2-ME2 can depolymerize microtubules and inhibit the nuclear accumulation and transcription activity of HIF-1α (33, 34). 2-ME2 has been shown to decrease the activity of HIF-1α and affect the expression of downstream genes in head and neck squamous cell carcinoma (23). The radiosensitization effects of 2-ME2 may be partially dependent on HIF-1α inhibition in various tumors (35). Therefore, we speculated that 2-ME2 inhibits the NF-κB/HIF-1 signaling pathway.

For further study, we knocked down NF-κB p65 using gene interference technology. We found that NF-κB p65 knockdown enhanced the antitumor effect of 2-ME2 on NPCSCs and that the protein and mRNA levels of HIF-1α decreased along with NF-κB p65, which implied that positive regulation of NF-κB p65 to HIF-1α existed in NPCSCs, corresponding with previous evidence that NF-κB can regulate HIF-1α at the mRNA level (36, 37). Our previous study determined that NF-κB p65 knockdown reduced the chemoresistance of NPCSCs via EMT reversal (24). Our subsequent experiments determined that NF-κB p65 knocked down inhibited EMT and reduced the radioresistance of NPCSCs. Based on the above evidence, we conclude that NF-κB p65 knockdown may enhance the effect of 2-ME2 on NPCSCs via HIF-1α downregulation and EMT reversal.

Overall, our findings indicate that 2-ME2 inhibits NPCSC proliferation, migration and radioresistance possibly by inhibiting the NF-κB/HIF-1 signaling pathway and reversing EMT. 2-ME2 has a potential use as a novel tumor therapy drug or radiotherapy sensitization agent, however, additional research and evidence are needed.

Acknowledgements

This study was supported by the General Program of the National Natural Science Foundation of China (nos. 81171365 and 81560444).

References

