Long non-coding RNA MALAT1 interacts with miR-124 and modulates tongue cancer growth by targeting JAG1

TONG-HAN ZHANG1*, LI-ZHONG LIANG2*, XIAO-LING LIU3*, JI-NAN WU1, KUI SU1, JUE-YAO CHEN1, QIAO-YI ZHENG1, HONG-ZHANG HUANG4,5 and GUI-QING LIAO4,5

1Department of Oral and Maxillofacial Surgery, The Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong 528403; 2Department of Oral and Maxillofacial Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000; 3Department of Medical Intensive Care Unit, The Affiliated Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong 528403; 4Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055; 5Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China

Received July 23, 2016; Accepted October 10, 2016

DOI: 10.3892/or.2017.5445

Abstract. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long non-coding RNA (lncRNA), was the earliest discovered to be correlated with cancer and contributes to the initiation and development of several types of tumors. Dysregulation of MALAT1 expression is frequently observed in many types of cancer such as gastric cancer, esophageal squamous cell carcinoma and glioma. To date, the role of MALAT1 and the underlying mechanisms in tongue cancer development remain unclear. In the present study, we studied the influence of MALAT1 on tongue cancer cell lines and clinical tongue cancer samples so as to detect its function and the underlying mechanism. In the present study, lncRNA-MALAT1 was specifically upregulated in tongue cancer cell lines and overexpression promoted tongue cancer cell growth by targeting miR-124. Knockdown of MALAT1 suppressed the growth and invasion of human tongue cancer cells and inhibited metastasis in vitro and in vivo. In addition, miR-124-dependent jagged1 (JAG1) regulation was required for MALAT1-induced tongue cancer cell growth. Our data revealed that MALAT1 inhibited tongue cancer cell growth and metastasis through miR-124-dependent JAG1 regulation. In conclusion, we revealed that MALAT1 may play an oncogenic role by increasing proliferation and metastasis of tongue cancer and is a potential therapeutic target in human tongue cancer.

Introduction

Human genome sequence data indicate that more than 90% of DNA sequences are actively transcribed but only 2% of them encode proteins. Thus, the majority of transcripts are referred to as non-coding RNAs (ncRNAs) (1,2). Small non-coding RNAs such as microRNAs have been studied extensively and their roles in gene regulation and cell function have been elucidated in numerous types of cancer (2). Recent studies have shown that long ncRNA (lncRNAs) play important roles in both normal development and diseases including cancer (3). lncRNAs have emerged as new players in cancer research and several studies have shown that various lncRNAs function as oncogenes, tumor-suppressor genes or both, depending on the circumstance (4).

Several lncRNAs have been reported to be involved in tongue cancer. Urothelial cancer-associated 1 (UCA1) lncRNA has been revealed to be significantly increased in tongue squamous cell carcinoma (TSCC) tissues (P<0.0001) and was found to be statistically correlated with lymph node metastasis (P=0.0371). Overexpression of UCA1 lncRNA promoted the metastatic but not the proliferative ability of TSCC cells (5). In addition, Gao et al reported that the expression levels of lncRNA-PPP2R4-5, lncRNA-SPRR2D-1, lncRNA-MAN1A2-1, lncRNA-FAM46A-1, lncRNA-MBL2-4:1 and lncRNA-MBL2-4:3 were higher in microdissected TSCC tissues compared with levels in a normal group. To the contrary, lncRNA-AL355149-1 and lncRNA-STXB5-1 were significantly downregulated (6).

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1, alternative name ‘alpha gene’) is located on chromosome 11q13 and the expression of MALAT1 has been reported to be upregulated in several types of cancer including lung, breast, pancreas, liver, colon, uterus, cervix and prostate cancer (7). Previous research has found that MALAT1...
expression alone is sufficient as a prognostic indicator for survival in several types of cancer (7). Yoshimoto et al reported that lncRNA MALAT1 expression is increased in metastatic carcinoma cells. Two molecular effects of MALAT1 have been determined, one is the control of alternative splicing and the other is transcriptional regulation (8). Although emerging evidence suggests that MALAT1 is associated with cancer progression and prognosis, the association between MALAT1 and tongue cancer and the possible underlying molecular mechanisms remain to be uncovered.

lncRNAs exert their effects through different mechanisms, among which the interaction with miRNAs that has recently been reported is the most important. According to Liu et al., the MALAT1-miR-124-RBG2 axis is involved in the growth and invasion of HR-HPV-positive cervical cancer cells (9). In regards to breast cancer, miR-124 downregulation leads to cancer progression via lncRNA-MALAT1 regulation and CDK4/E2F1 signal activation (10). Whether MALAT1 could affect tongue cancer progression through interaction with miR-124 remains to be confirmed.

Jagged1 (JAG1) is one of five cell surface proteins (ligands) that interact with 4 receptors in the mammalian Notch signaling pathway. In recent years, JAG1 has been frequently reported to be highly expressed in many types of cancer and is usually associated with poor overall survival (11,12). It has also been regarded as a downstream gene of several miRNAs, and may exert its function through regulation by miRNAs (13,14).

In the present study, we report an interaction between MALAT1 and miR-124 which regulates tongue cancer cell growth by directly targeting JAG1. Our findings provide a novel understanding of the role of MALAT1 and miR-124 in tongue cancer metastasis and the underlying mechanism.

Materials and methods

Cell lines. The human tongue cancer cell lines, CAL-27, SCC-9, SCC-4, SCC-15 and SCC-25 were purchased from the American Type Culture Collection (ATCC, Manassas, VA, USA). Cells from a mixture of three tissues were used as the control.

Tissue specimens. Thirty paired tongue cancer specimens and adjacent non-neoplastic tongue tissues were collected from patients following tumor surgical resection at The Affiliated Zhongshan Hospital, Sun Yat-sen University (Zhongshan, China). All the human tissues were obtained with informed consent from all subjects and donors. This study was approved by the Institutional Review Board of Zhongshan Hospital and informed consent from all subjects and donors. This study was approved by the Institutional Review Board of Zhongshan Hospital.

Cell transfection. miRNA mimics and siRNAs were synthesized by GenePharma Co., Ltd. (Shanghai, China). Transfection was conducted using Lipofectamine™ 2000 transfection reagent (Invitrogen, Carlsbad, CA, USA), according to the protocol recommended by the manufacturer. After a 48-h transfection, the cells were collected and used for further experiments.

MTT assay. Cell proliferation was determined using an MTT assay (Promega Corp., Madison, WI, USA), according to the manufacturer’s instructions. Twenty-four hours after being seeded into 96-well plates at a density of 5,000 cells/well, the cells were transfected with 100 nM miR-124 mimics/miR-124NC or si-NC/si-MALAT1 or si-NC/si-JAG1. Twenty-four hours after transfection, 20 μl of 5 mg/ml MTT was added and then the cells were incubated for 4 h in a humidified incubator. DMSO (200 μl) was added to dissolve the formazan after the supernatant was discarded. The optical density (OD) was measured at 490 nm.

RNA extraction and real-time PCR. Total RNA was extracted by TRIzol reagent (Invitrogen) following the manufacturer’s instructions. A High-Capacity cDNA Reverse Transcription kit (Applied Biosystems, Foster City, CA, USA) was used to reversely transcribe RNA samples. Quantitative RT-PCR was performed using the FastStart Universal SYBR-Green Master (Roche, Indianapolis, IN, USA). The primers were as follows: MALAT1 sense, 5'-AAAGCAAGGT CTCCCCAACAG-3' and antisense, 5'-GGTCTGTGCTAGTAT CAAAAGGCA-3'; GAPDH sense, 5'-AGAAGGCTGGGGCTCCCCACAAG-3' and antisense, 5'-GGAGGCTGGCTGGGGCTCATTTTG-3' and antisense, 5'-AGGGGCACTCCACAGTCTTCC-3'. The relative fold change of candidate genes was analyzed using the 2(-ΔΔCT) method.

Transwell invasion assay. After removal of cells by trypsinization, a 1×10⁵ cell suspension with 10% FBS was added into the Transwell inserts with an 8-μm pore size, in 24-well plates coated with 50 μl Matrigel (both from BD Biosciences). Then 200 μl of medium supplemented with 15% FBS was added into the bottom chamber; 24 and 48 h after migration, the cells which did not undergo migration in the upper chamber were wiped up; the filters were independently fixed with 4% paraformaldehyde and were stained with hematoxylin and eosin. Then the number of cells from five random fields was counted.

Western blot analysis. RIPA buffer (Sigma-Aldrich, St. Louis, MO, USA) was used to lyse cell lysates with a complete protease inhibitor cocktail (Roche). Cell lysates were transferred to a 1.5-ml tube and kept at -20°C before use. SDS-PAGE was conducted to separate the cellular proteins. All the cellular proteins in this study were separated by 5% stacking gel and 10% running gel. The candidate proteins whose molecular weights were included in the information for the Pre-Stained SeeBlue rainbow markers (Invitrogen) were loaded in parallel. The following antibodies were used to probe the membranes: JAG1 (Abcam, Cambridge, MA, USA), and β-actin (Sigma-Aldrich). The blots were detected on a Kodak film developer (Fujiﬁlm, Tokyo, Japan).

Luciferase reporter assay. With the use of Lipofectamine™ 2000 transfection reagent, CAL-27 cells cultured in 24-well plates were co-transfected with luciferase reporter plasmids and miRNA mimics as well as the internal control pRSV-β-galactosidase vector. Forty-eight hours post-transfection, CAL-27 cells were lysed with lysis buffer (25 mM Tris-phosphate, 1% Triton X-100, 1 mM DTT, 2 mM EDTA, 10% glycerol, pH 27.8). After centrifugation at 14,000 rpm for 3 min, the supernatant was transferred to a new 1.5-ml tube. The luciferase activity was assessed using the GloMax 20/20 Luminometer (Promega Corp.) after mixing 50 μl supernatant...
with 50 µl luciferase assay buffer (265 µM ATP, 2.70 mM MgSO4, 1.07 mM MgCl2, 135 µM coenzyme A, 20 mM Tricine, 0.1 mM EDTA, 33.3 mM DTT, 235 µM D-luciferin). The β-galactosidase activity from the pRSV-β-galactosidase vector was used for the normalization of the luminescence levels. O-nitrophenyl-β-galactoside (ONPG) colorimetric assays were performed to assess the β-galactosidase activity. The β-galactosidase activity was evaluated using the measurement of o-nitrophenol obtained on an ELISA plate reader (Bio-Rad Laboratories, Inc., Hercules, CA, USA) at the wavelength of 490 nm.

Statistical analysis. Experimental results are presented as the mean ± SD of at least three independent experiments. Comparisons between two groups were conducted using a two-tailed Student’s t-test and differences were considered to be statistically significant at a P-value <0.05.

Results

IncRNA-MALAT1 is specifically upregulated in tongue cancer tissues and cell lines. Initially the expression levels of MALAT1 in 30 paired samples (tongue cancer specimens and corresponding adjacent non-tumor tissues) were examined using real-time PCR. Results showed that the expression level of MALAT1 was markedly higher in tumor tissues, compared with the level in the control group (adjacent non-neoplastic tongue tissues) (Fig. 1A). Then MALAT1 expression levels in five human tongue cancer cell lines, CAL-27, SCC-9, SCC-4, SCC-15, SCC-25 and cells from a mixture of three tissues that were used as the control were determined using real-time PCR. The results revealed that in all human tongue cancer cell lines, CAL-27, SCC-9, SCC-4, SCC-15 and SCC-25, and a normal cell line was assessed when compared to that noted in the adjacent tissues. The results revealed that the expression of MALAT1 in the five human tongue cancer cell lines was upregulated when compared to that in the control group. **P<0.01, compared with the control group. IncRNA, long non-coding RNA; MALAT1, metastasis-associated lung adenocarcinoma transcript 1

miR-124 is negatively correlated with IncRNA-MALAT1. According to previous studies, miR-124 plays a suppressive role in cancer (15,16). To further investigate the mechanism by which MALAT1 regulates tongue cancer cell growth, we ascertained the association of miR-124 and MALAT1. The results from real-time PCR revealed that the expression levels of miR-124 in the CAL-27 and SCC-9 cell lines were significantly upregulated after knockdown of MALAT1 compared with expression levels of miR-124 in the the si-NC groups (Fig. 3A). Then miR-124 mimics and miR-124 inhibitor were used to achieve miR-124 overexpression and miR-124 inhibition, and the expression levels of miR-124 were assessed using real-time PCR in CAL-27 and SCC-9 cell lines (Fig. 3B). The expression levels of MALAT1 were determined using real-time PCR in response to miR-124 overexpression or miR-124 inhibition. Results showed that MALAT1 expression was decreased in response to miR-124 overexpression while MALAT1 expression was increased in response to miR-124 inhibition, compared with the miR-124 NC groups (Fig. 3C). Moreover, the expression levels of miR-124 were revealed to be significantly downregulated in tumor tissues compared with the adjacent non-neoplastic tongue tissues (Fig. 3D). We examined the potential correlation between the RNA expression levels of MALAT1 and miR-124 and an inverse correlation between their expression levels was observed (Fig. 3E). Collectively, miR-124 expression was correlated with MALAT1 and an inverse correlation between the expression of MALAT1 and miR-124 was observed.

miR-124 binds to IncRNA-MALAT1 by direct targeting. In order to investigate the mechanism by which miR-124 is correlated with MALAT1, we constructed a wt-MALAT1
ZANG et al: lncRNA MALAT1 AND miR-124 MODULATE TONGUE CANCER GROWTH BY TARGETING JAG1

Figure 2. lncRNA-MALAT1 promotes tongue cancer cell growth and invasion. (A) MALAT1 knockdown was achieved by si-MALAT1 transfection and the inhibitory efficiency was assessed by real-time PCR. (B) CAL-27 and SCC-9 cells were transfected with si-NC/si-MALAT1. The cell proliferation of CAL-27 and SCC-9 cells was evaluated using MTT assays. MTT assays revealed that knockdown of MALAT1 significantly attenuated the proliferation of both CAL-27 and SCC-9 cell lines over time, compared with the si-NC group. (C) CAL-27 and SCC-9 cells were transfected with si-NC/si-MALAT1. The invasive capacity of CAL-27 and SCC-9 cells was monitored using Transwell assays. Transwell assays revealed that knockdown of MALAT1 markedly decreased the cell migratory abilities of both CAL-27 and SCC-9 cell lines. The percentage of invasion in the si-MALAT1 group was significantly decreased compared with the si-NC group. **P<0.01, compared with the si-NC group. lncRNA, long non-coding RNA; MALAT1, metastasis-associated lung adenocarcinoma transcript 1.

Figure 3. miR-124 is negatively correlated with lncRNA-MALAT1. (A) CAL-27 and SCC-9 cells were transfected with si-NC/si-MALAT1. The expression levels of miR-124 were monitored in response to MALAT1 knockdown using real-time PCR assays. Real-time PCR assay showed that the expression levels of miR-124 were significantly upregulated after knockdown of MALAT1 compared with the si-NC group. (B) miR-124 mimics and miR-124 inhibitor were used to achieve miR-124 overexpression and miR-124 inhibition, respectively, and the expression levels of miR-124 were assessed using real-time PCR in CAL-27 and SCC-9 cell lines. (C) CAL-27 and SCC-9 cells were transfected with the miR-124 NC/miR-124 mimics or inhibitor NC/miR-124 inhibitor. The expression levels of MALAT1 were evaluated in response to miR-124 overexpression or inhibition using real-time PCR. Results showed that MALAT1 expression was decreased in response to miR-124 overexpression while it was increased in response to miR-124 inhibition, compared with the miR-124 NC group. (D) miR-124 expression in tumor and normal tissues was determined using real-time PCR. The expression levels of miR-124 were significantly downregulated in the tumor tissues compared with the adjacent normal tissues. (E) Spearman's correlation analysis was performed, and an inverse correlation between the expression MALAT1 and miR-124 was observed. **P<0.01, compared with the si-NC group, mimics NC group, inhibitor NC group or control group. lncRNA, long non-coding RNA; MALAT1, metastasis-associated lung adenocarcinoma transcript 1.
3′-untranslated region luciferase reporter vector (wt-MALAT1), and a mut-MALAT1 3′-untranslated region luciferase reporter vector (mut-MALAT1) were constructed by sequentially mutating the predicted two miR-124 binding sites in the MALAT1 3′-untranslated region (Fig. 4A). The wt-MALAT1/ mut-MALAT1 vectors and the miR-124 NC/miR-124 mimics were co-transfected into CAL-27 cells. The luciferase activity of the MALAT1 3′-untranslated region luciferase reporter vector was then determined using luciferase assays. The luciferase activity of the MALAT1 3′-untranslated region luciferase reporter vector was significantly decreased in the miR-124 mimic-transfected cells, compared to the control groups. miR-124-mediated suppression of MALAT1 3′-untranslated region luciferase reporter activity was abolished by mutation of the putative miR-124 binding site in the MALAT1 3′-untranslated region. **P<0.01, compared with the mimics NC group. lncRNA, long non-coding RNAs; MALAT1, metastasis-associated lung adenocarcinoma transcript 1.

miR-124 inhibits tongue cancer cell growth and invasion. It has been indicated that miR-124 functions as a tumor suppressor in several types of cancer (17,18). Here, an MTT assay was used to determine tongue cancer cell growth in response to miR-124 overexpression. It was observed that the cell proliferation of both CAL-27 and SCC-9 cells was decreased when miR-124 was overexpressed compared with the miR-124 NC group. miR-124 NC/miR-124 mimics were transfected into CAL-27 and SCC-9 cells, respectively. Then, the invasive abilities of CAL-27 and SCC-9 cells were determined using Transwell assays in response to miR-124 overexpression. Results from the Transwell assays indicated that miR-124 overexpression markedly decreased the cell migratory abilities of both CAL-27 and SCC-9 cells compared with the miR-124 NC group. **P<0.01, compared with the mimics NC group. MALAT1, metastasis-associated lung adenocarcinoma transcript 1.

miR-124-dependent JAG1 regulation is required in tongue cancer cell growth modulation. In a previous study, JAG1 was reported to be influenced by miR-124 (19). In order to reveal the association of miR-124 with JAG1 in tongue cancer, we created a wt-JAG1 3′-untranslated region luciferase reporter vector (wt-JAG1) and a mut-JAG1 3′-untranslated region luciferase reporter vector (mut-JAG1).
Zhang et al.: LncRNA MALAT1 and miR-124 Modulate Tongue Cancer Growth by Targeting JAG1

Figure 6. miR-124 dependent JAG1 regulation is required in tongue cancer cell growth modulation. (A) A wt-JAG1 3′-untranslated region luciferase reporter vector (wt-JAG1), as well as a mut-JAG1 3′-untranslated region luciferase reporter vector (mut-JAG1) were created by sequentially mutating the predicted two miR-124 binding sites in the JAG1 3′-untranslated region. The wt-JAG1/mut-JAG1 vectors and the miR-124 NC/miR-124 mimics were co-transfected into CAL-27 cells. The luciferase activity of the JAG1 3′-untranslated region luciferase reporter vector was then determined using luciferase assays. The luciferase activity of the JAG1 3′-untranslated region luciferase reporter vector was significantly decreased in the miR-124 mimic-transfected cells, compared to the control groups. miR-124-mediated suppression of JAG1 3′-untranslated region luciferase reporter activity was abolished by mutation of the putative miR-124 binding site in the JAG1 3′-untranslated region. (B) CAL-27 and SCC-9 cells were transfected with the miR-124 NC/miR-124 mimics or inhibitor NC/miR-124 inhibitor, respectively. The expression levels of JAG1 protein were then assessed in response to miR-124 overexpression or miR-124 inhibition using western blot analysis. Western blot analysis results revealed that the expression of JAG1 was significantly downregulated by miR-124 overexpression in both CAL-27 and SCC-9 cell lines. (C) JAG1 expression was determined in tumor tissues and normal tissues using real-time PCR. The expression levels of JAG1 were significantly upregulated in the tumor tissues compared with the adjacent normal tissues. (D) Spearman's correlation analysis was performed and an inverse correlation between the expression of JAG1 and miR-124 was observed. **P<0.01, compared with the mimics NC group or control group. Jagged1, JAG1.

Figure 7. JAG1 is positively correlated with MALAT1. (A) Spearman's correlation analysis was performed, and a positive correlation between MALAT1 and JAG1 levels was observed. (B and C) CAL-27 and SCC-9 cells were transfected with si-NC/si-MALAT1 or si-NC/si-JAG1, respectively. The expression levels of the JAG1 protein were then monitored in response to MALAT1-knockdown or JAG1-knockdown using western blot analysis. The results revealed that the protein contents of JAG1 in CAL-27 and SCC-9 cell lines were significantly decreased in response to MALAT1-knockdown by si-MALAT1 or JAG1 inhibition by si-JAG1. Jagged1, JAG1; MALAT1, metastasis-associated lung adenocarcinoma transcript 1.

region luciferase reporter vector (mut-JAG1) by sequentially mutating the predicted two miR-124 binding sites in the JAG1 3′-untranslated region (Fig. 6A). The wt-JAG1/mut-JAG1 vectors with the miR-124 NC/miR-124 mimics were co-transfected into CAL-27 cells. The luciferase activity of the JAG1 3′-untranslated region luciferase reporter vector was markedly attenuated in the cells co-transfected with the miR-124 mimics and wt-JAG1, compared to the control groups (Fig. 6A). Additionally, miR-124-mediated suppression of the JAG1 3′-untranslated region luciferase reporter activity was eliminated in the cells co-transfected with miR-124 mimics and mut-JAG1 (Fig. 6A). Next, through western blot analysis assay we revealed that the expression of JAG1 was significantly downregulated by miR-124 overexpression but
MALAT1, cell proliferation and invasion were significantly increased in tongue cancer cell lines. After siRNA-knockdown of MALAT1 expression in normal cell lines and tongue cancer cell lines were revealed to be significantly upregulated in tumor tissues compared with levels in the adjacent normal tissues (Fig. 6C). We then examined the potential correlation between the RNA expression levels of MALAT1 and miR-124 and observed an inverse correlation between the expression of JAG1 and miR-124 (Fig. 6D).

JAG1 is positively correlated with MALAT1. To further investigate the correlation between MALAT1 and JAG1, we determined the potential correlation between the RNA expression levels of MALAT1 and JAG1. A positive correlation between the expression levels of MALAT1 and JAG1 was observed (Fig. 7A). Western blot analysis results revealed that the protein contents of JAG1 in the CAL-27 and SCC-9 cell lines were significantly decreased in response to MALAT1-knockdown by si-MALAT1 or JAG1 inhibition by si-JAG1 (Fig. 7B and C).

MALAT1 regulates tongue cancer cell line proliferation and invasion through JAG1. Given that JAG1 was positively correlated with MALAT1, we next determined the role of MALAT1 and JAG1 in the regulation of tongue cancer proliferation and invasion. Transwell results revealed that the cell migratory abilities were decreased after JAG1 inhibition (Fig. 8A). Moreover, according to the MTT assay results, CAL-27 and SCC-9 cell growth was attenuated in response to JAG1 inhibition by si-JAG1 (Fig. 8B).

Discussion

IncRNA MALAT1 has been reported to be upregulated in many types of cancer (20). Initially we studied MALAT1 expression in normal cell lines and tongue cancer cell lines and found that MALAT1 expression was significantly higher in tongue cancer cell lines. After siRNA-knockdown of MALAT1, cell proliferation and invasion were significantly decreased in tongue cancer cell lines. These results suggested that MALAT1 functions as an oncogene in tongue cancer, consistent with the results obtained from Hirata et al. that revealed that MALAT1 promotes human renal cancer cell growth (21). The molecular mechanism by which MALAT1 promotes cancer cell proliferation is different depending on the type of cancer. MALAT1 may promote colorectal cancer development via its target protein AKAP-9 (22). In the context of clear cell kidney carcinoma, MALAT1 enhanced KIRC growth and invasion by inhibiting miR-200s, while miR-200c could partially restore the effect of MALAT1 on KIRC growth and invasion (23). Moreover, an obvious inverse correlation between miR-101 or miR-217 and MALAT1 in esophageal squamous cell carcinoma was observed, and knockdown of MALAT1 was found to block the growth, metastasis, and invasion of esophageal squamous cell carcinoma cells (24). These studies suggest that this IncRNA-microRNA interaction plays an important role in cancer progression through the regulation of cancer growth and metastasis.

In the present study, we revealed the interaction between MALAT1 and miR-124 for the first time. The knockdown of MALAT1 upregulated miR-124, while forced miR-124 overexpression inhibited the expression of MALAT1. miR-124, a tumor-suppressor microRNA, has been reported to be involved in solid tumors such as non-small cell lung, esophageal and colon cancer (25,26,27). Hunt et al. reported that forced overexpression of miR-124 decreased endogenous ITGB1 expression and suppressed the adherence and motility of oral squamous cell carcinoma (OSCC) cells, indicating that disruption of miR-124-mediated suppression of ITGB1 may play a major role in OSCC progression (28). In the present study, we revealed that miR-124 regulates tongue cancer growth by targeting JAG1. Given that MALAT1 interacts with miR-124 in tongue cancer cell lines, we assumed that MALAT1 may regulate JAG1 through miR-124.

To detect the role of MALAT1 in tongue cancer cell growth regulation, siRNA was transfected into tongue cancer cell lines to knockdown MALAT1. As expected, JAG1 was downregulated by MALAT1-knockdown. In addition, the proliferation of tongue cancer cell lines was decreased by JAG1 inhibition. According to previous studies, JAG1 functions as an oncogene and promotes cancer cell growth (12,29,30).

To further validate the correlation of MALAT1, miR-124 and JAG1 in tongue cancer tissues, the expression levels of MALAT1, miR-124 and JAG1 were determined. The data revealed that the expression levels of MALAT1 and JAG1 were upregulated, while miR-124 expression was downregulated. In conclusion, the MALAT1/miR-124/JAG1 interaction plays a
key role in tongue cancer growth, providing a potential therapeu-
tic application in tongue cancer patients.

Acknowledgements

This study was supported by grants from the National Natural
Science Foundation of China (81302356), the Postdoctoral
Science and Technology Project of Guangdong Province
Science Foundation of China (81302356), the Postdoctoral
This study was supported by grants from the National Natural
Natural Science Foundation of China (81302356), the Postdoctoral

References

1. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T,
 Landscape of transcription in human cells. Nature 489: 101-108,
 2012.
2. Martens-Uzunova ES, Bittrich R, Croce CM, Jenster G,
 Visakorpi T and Calin GA: Long noncoding RNA in prostate,
3. Ponting CP, Oliver PL and Reik W: Evolution and functions of
 long noncoding RNAs in kidney cancer. J Cancer Res Clin
 expression of the long non-coding RNA UCA1 in tongue
 squamous cell carcinomas: A possible correlation with cancer
 89-95, 2014.
6. Gao W, Chan JY and Wong TS: Long non-coding RNA deregula-
 405860, 2014.
7. Shi X, Sun M, Liu H, Yao Y and Song Y: Long non-coding
 RNAs: A new frontier in the study of human diseases. Cancer
8. Yoshimoto R, Mayeda A, Yoshida M and Nakarawa S: MALAT1
 long non-coding RNA in cancer. Biochim Biophys Acta 1859:
 axis is involved in growth and invasion of HR-HPV-positive
 cancer progression via lncRNA-MALAT1 regulation and
 Lockwood G and Egan SE: High-level coexpression of JAG1 and
 NOTCH1 is observed in human breast cancer and is associated
12. Chang WH, Ho BC, Hsiao YJ, Chen JS, Yeh CH, Chen HY,
 Chang GC, Su K and Yu SL: JAG1 is associated with poor
 survival through inducing metastasis in lung cancer. PLoS
 One 11: e0150355, 2016.
13. Selcuklu SD, Donoghue MT, Kerin MJ and Spillane C:
 Regulatory interplay between miR-21, JAG1 and 17beta-estradiol
 (E2) in breast cancer cells. Biochem Biophys Res Commun 423:
14. Liu MX, Siu MK, Liu SS, Yam JW, Ngan HY and Chan DW:
 Epigenetic silencing of microRNA-199b-5p is associated with
 acquired chemoresistance via activation of JAG1-Notch1
 migration and invasion by down-regulating ROCK1 in glioma.
 miR-124 inhibits cell proliferation, migration and invasion by
 directly targeting SOX9 in lung adenocarcinoma. Oncol Rep 35:
 3151-3161, 2016.
 functions as a tumor suppressor and indicates prognosis in
 Guan XY, Lin MC, Zeng YX, et al: The putative tumour
 suppressor microRNA-124 modulates hepatocellular carcinoma
 cell aggressiveness by repressing ROCK2 and EZH2. Gut 61:
 regulates the proliferation of colorectal cancer cells by targeting
20. Gutschner T, Hämmerle M and Diederichs S: MALAT1 - a
 paradigm for long noncoding RNA function in cancer. J Mol
 Tabatabaizadeh JS, Nishino Y and Dahiya R: Long noncoding
 RNA MALAT1 promotes aggressive renal cell carcinoma through
 EZH2 and interacts with miR-205. Cancer Res 75: 1322-1331,
 2015.
22. Wang MH, Hu ZY, Xu C, Xie LY, Wang XY, Chen SY and
 Li ZG: MALAT1 promotes colorectal cancer cell prolifera-
 tion/migration/invasion via PRKA kinase anchor protein 9.
 Yao W, Zhao H, et al: lncRNA MALAT1 functions as a
 competing endogenous RNA to regulate ZEB2 expression by
 sponging miR-200s in clear cell kidney carcinoma. Oncotarget 6:
 38005-38015, 2015.
 Yang Q and Yang M: Silencing of long noncoding RNA MALAT1
 by miR-101 and miR-217 inhibits proliferation, migration, and
 invasion of esophageal squamous cell carcinoma cells. J Biol
 SOX8 expression and suppresses cell proliferation in non-small
 involved in miR-124-mediated suppressive effects on esophageal
27. Taniguchi K, Sugitou N, Kumazaki M, Shinohora H, Yamada N,
 Positive feedback of DDX6/c-Myc/PTB1 regulated by miR-124
 contributes to maintenance of the Warburg effect in colon cancer
28. Hunt S, Jones AV, Hinsley EE, Whasell SA and Lambert DW:
 MicroRNA-124 suppresses oral squamous cell carcinoma
29. Simon DP, Giordano TJ and Hammer GD: Upregulated JAG1
 enhances cell proliferation in adrenocortical carcinoma.
30. Dickson BC, Mulligan AM, Zhang H, Lockwood G, O'Malley FP,
 Egan SE and Reedijk M: High-level JAG1 mRNA and protein
 predict poor outcome in breast cancer. Mod Pathol 20: 685-693,
 2007.