Matrine inhibits the metastatic properties of human cervical cancer cells via downregulating the p38 signaling pathway

XIAOLING WU1, JIE ZHOU1,2, DONGGE CAI1 and MU LI1

1Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004; 2Department of Obstetrics, Xi’an Gaoxin Hospital, Xi’an, Shaanxi 710075, P.R. China

Received February 3, 2017; Accepted June 26, 2017

DOI: 10.3892/or.2017.5787

Abstract. Matrine is a traditional Chinese herbal medicine. The present study evaluated the antitumor efficacy of matrine on cervical cancer and to investigate the underlying mechanisms. We performed MTT assays, and in vitro invasion and migration assays, and P1 L6 found that matrine significantly inhibited cervical cancer cell growth by inducing apoptosis, and suppressed the invasion and migration ability of cervical cancer cells in vitro in a concentration-dependent manner. Mechanistically, we found that matrine decreased the expression and activity of the extracellular matrix factors, matrix metalloproteinases-2 (MMP-2) and MMP-9 via the suppression of p38 signaling pathway. In addition, when cervical cancer cells were grown as xenografts in nude mice, intraperitoneal (i.p.) injection of matrine induced a significant dose-dependent decrease in tumor growth. Taken together, these findings suggest that a potential mechanism by which matrine inhibits the growth and metastasis of cervical cancer through downregulating the p38 signaling pathway.

Introduction

Cervical cancer is the fourth most common cause of cancer-related mortality in women worldwide (1). In the clinical, surgery may be used alone or with radiation therapy and chemotherapy for cervical cancer treatment, depending on the stage of the cancer and the patients’ preferences. However, metastasis and recurrence of invasive cervical cancer will lead to poor prognosis and treatment failure. Therefore, it is urgent to develop alternative treatment options which are more effective and less toxic. In recent years, considerable attention has been given to the application of traditional Chinese medicine (TCM) in anticancer therapy (2-4). Matrine, which was approved by Chinese FDA (CFDA) in 1995, is derived primarily from Sophora species plants and has a chemical formula of C15H24N2O (5). Matrine exhibits a wide range of pharmacological effects and has long been applied to treat viral hepatitis (6), neuropathic pain (7), isoproterenol-induced cardiotoxicity inflammatory and other diseases (8,9). In addition, increasing evidence has revealed that matrine displays antitumor effects in various cancers, such as gastric (10), rhabdomyosarcoma (11), acute myeloid leukemia (12), osteosarcoma (13), prostate (14), breast (15) and lung cancer (16). Moreover, the antitumor mechanisms of matrine have been demonstrated to involve the blockade of cell cycle progression, the induction of apoptosis, the regulation of oncogene expression, the inhibition of cytokine production and the modulation of signaling pathways (17-19).

Metastasis is a multi-step process that involves various cytophysiological changes, among which the degradation of the extracellular matrix (ECM) is very important (20). Matrix metalloproteinases-2 (MMP-2) and MMP-9 play important roles in degrading basement membranes and are intricately involved in cancer invasion and metastasis (21-23). The mitogen-activated protein kinases (MAPKs) are important components of intracellular signaling networks that regulate cell proliferation, differentiation, cellular stress responses, apoptosis and tumor progression (24,25). The activation of p38 signaling pathway, which belongs to MAPKs, is correlated to the development of cancer (26-28). Tumor cells need to modulate p38 activity to successfully metastasize (29). Recent studies showed that p38 signaling pathway participates in the invasion and metastasis of cervical cancer (30-32). Notably, Zhang et al (33) recently reported that matrine inhibited HeLa cell adhesion and migration through the inhibition of the activity of cAMP-dependent protein kinase (PKA) and vasodilator-stimulated phosphoprotein (VASP). On the other hand, Tan et al (34) recently reported that matrine activated the p38 pathway and promoted caspase-dependent apoptosis by inducing the generation of ROS in non-small cell lung cancer cells. Therefore, in the present study we aimed to investigate the effects of matrine against the invasion and metastasis of cervical cancer and explore whether the mechanism of its actions is associated with the p38 signaling pathway.
Materials and methods

Reagents. Matrine, dimethyl sulfoxide dissolving (DMSO), SB203580 and anisomycin were purchased from Sigma-Aldrich (St. Louis, MO, USA). Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), penicillin and streptomycin were purchased from Invitrogen (Carlsbad, CA, USA). Anti-p38, anti-phospho-p38 (p-p38), anti-MMP-2, anti-MMP-9, anti-Akt, anti-pAkt, anti-NF-κB p65 and anti-p-p65, antibodies were purchased from Cell Signaling Technology (Danvers, MA, USA). Anti-β-actin antibody was purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

Cell culture. Human cervical cancer cell lines HeLa and C33A were purchased from the American Type Culture Collection (ATCC; Manassas, VA, USA) and were cultured in DMEM supplemented with 10% FBS, 100 U/ml penicillin and 100 µg/ml streptomycin. All cells were incubated at 37˚C in 5% CO₂.

Cell viability assay. Cell survival was assessed using standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay kit (Sigma-Aldrich) according to the manufacturer’s instructions. Briefly, cells were seeded in 96-well culture plate (Corning Costar, Corning, NY, USA) at 2x10⁴ cells/well in quadruplicate. The cells were treated with different concentrations of matrine (0-400 µg/ml) for 24, 48 or 72 h, then cells were washed twice with phosphate-buffered saline (PBS) and incubated with 20 µl MTT (5 mg/ml) for 4 h at 37˚C. The solution was then discarded and 150 µl DMSO was added to each well. The optical density was measured in a microplate reader at 562 nm. Each experiment was performed in triplicate.

Flow cytometric analysis of apoptosis. Apoptosis was analyzed in vitro using a fluorescence-activated cell sorter (FACS) Annexin V assay kit (BD Biosciences, San Jose, CA, USA) according to the manufacturer’s instructions. Briefly, the cells were exposed to oxymatrine at concentrations of 0, 25, 50 and 100 µg/ml for 48 h, then harvested and resuspended in binding buffer. Follow staining in duplicate with 5 µl of Annexin V-FITC and 5 µl of propidium iodide (PI) for 30 min in the dark, the samples were analyzed by flow cytometry using a FACSCalibur system (BD Biosciences). The percentage of apoptotic cells is referred as the apoptotic index. Each experiment was performed in triplicate.

In vitro invasion and migration assays. The in vitro invasion and migration activity was measured according to the methods previously described (35). HeLa and C33A cervical cells were pretreated with 0, 25, 50 and 100 µg/ml matrine or SB203580 (10 µM) or anisomycin (5 µM) for 24 h, surviving cells were harvested and seeded to Boyden chamber (Neuro Probe, Inc., Cabin John, MD, USA) at 10⁵ cells/well in serum-free medium and then incubated for 24 h at 37˚C. At the end point, the cells on the upper side of inserts were completely removed by swabbing, while the cells on the bottom side of the filter were fixed, stained and counted. For invasion assay, 50 µl Matrigel (25 µg/ml, BD Biosciences, Bedford, MA, USA) was applied to 8-mm pore size polycarbonate membrane filters.

Detection of apoptosis. Apoptosis was analyzed by using an enhanced chemiluminescence kit (Amersham Biosciences). The bands were visualized under UV light and the intensity was measured using ImageJ software (NIH Image, Bethesda, MD, USA) and the results were expressed as arbitrary units (a.u.).

Animal and tumor xenograft assays. To assess in vivo tumorigenicity, 4- to 6-week-old BALB/c athymic nude mice were purchased from the Experimental Animal Center of Xian Jiaotong University Medical College (Xi’an, China). Suspensions of HeLa tumor cells (1x10⁶ viable cells/mouse)
were implanted into the right flank region of BALB/c nude mice. At 48 h after the injection (day 1), the mice were randomly divided into two groups (n=6). The animals were pair-matched so that the median tumor volume for each group was similar: the treatment group received matrine at 50 mg/kg per day via intragastric administration; the control group received an equal volume of normal saline. The tumor volumes were measured twice weekly with calipers and calculated according to the standard formula: (length x width^2)/2. After 3 weeks of drug administration, the mice were sacrificed and the tumors were dissected and weighed. The experimental protocols were approved by the Animal Care and Use Committee of the Medical School of Xi'an Jiaotong University.

Statistical analysis. Statistical analyses were performed using the GraphPad Prism 5.01 software (GraphPad Software, Inc., La Jolla, CA, USA). All data are expressed as mean ± standard deviation (SD). The Student's t-test was used for comparisons between two groups and one-way or two-way analysis of variance (ANOVA) test was used to analyze the statistical differences between the groups under different conditions. Correlation analysis was performed by the Z-test. P<0.05 was regarded as statistically significant. All statistical tests and corresponding P-values were two-sided.

Results

Matrine inhibits the proliferation of human cervical cancer cells by inducing apoptosis. The inhibitory effects of matrine at various concentrations (0-400 µg/ml) on the growth of HeLa and C33A cervical cancer cells were assessed by MTT assay. As shown in Fig. 1A and B, at the concentration of 50-100 µg/ml of matrine, HeLa and C33A cells showed a sharp decrease in cell viability (P<0.05), and the growth inhibition rates were increased with elevated matrine concentration (>100 µg/ml) (P<0.01), suggesting that matrine inhibits the growth of cervical cancer cells in a dose-dependent manner in vitro. In addition, during the prolonged treatments (48 and 72 h), matrine showed a significantly greater inhibitory effect than that at 24 h (P<0.01).

It has been reported that matrine exhibits antitumor effects by inducing apoptosis of various cancer cells (36,37). Thus, to examine the effects of matrine on cervical cancer cell apoptosis, matrine-treated cells were stained with Annexin V/PI and subjected to flow cytometric analysis. As shown in Fig. 1C, matrine induced a significant increase in the proportion of apoptotic HeLa and C33A cells, matrine at concentration of 25, 50 and 100 µg/ml caused 8.9±2.1, 19.5±3.17 and 38.4±1.13% of HeLa cells and 5.3±2.29, 15.37±3.01 and 28.91±5.63% of C33A cells to undergo apoptosis, respectively. Based on previous in vitro studies (33), we selected concentrations of 25, 50 and 100 µg/ml matrine for subsequent investigation to rule out the cytotoxicity. Taken together, these results suggest that matrine significantly inhibits the growth of cervical cancer cells at a dose- and time-dependent manner by inducing apoptosis.

Matrine inhibits the migration and invasion of cervical cancer cells. Abnormal growth and metastasis of cancer cells are regarded as the important biological characteristics of cancers. Next, we examined the effects of matrine on the migration and invasion of cervical cancer cells. Matrine at the concentrations of 25, 50 and 100 µg/ml significantly reduced the rate of HeLa cells migration compared with the control group (Fig. 2A). Matrine at concentrations of 25, 50 and 100 µg/ml caused 40.5±2.05, 49.85±7.48 and 74.29±4.26% inhibition of cell migration, respectively (Fig. 2C). In addition, the invasion assay revealed similar results (Fig. 2B and D), the inhibition of HeLa cell invasion was 40.1±1.95, 78.84±3.05 and 92.74±3.75%, at concentrations of 25, 50 and 100 µg/ml, respectively. Similar inhibitory effects of matrine on cell migration and invasion were observed in C33A cells (Fig. 2). These findings suggest that matrine inhibits the migration and invasion of cervical cancer cells in a concentration-dependent manner.
Figure 2. Matrine inhibits the invasion and migration of cervical cancer cells. HeLa and C33A cells were treated for 24 h with 0.1% DMSO as the control or various concentrations of matrine (0, 25, 50 and 100 µg/ml), and (A) cell migration and (B) invasion were analyzed as described in Materials and methods. Representative images of 3 independent experiments are shown. Magnification, x200. (C) Quantitative analysis of HeLa and C33A cell migration. (D) Quantitative analysis of HeLa and C33A cell invasion. Data were expressed as the mean ± SD (n=3). Statistical analysis was carried out using the one-way ANOVA followed by Bonferroni post tests. *P<0.05 and **P<0.01 vs control group.

Figure 3. Matrine suppresses the expression and activity of MMP-2 and MMP-9 in HeLa cells. (A) HeLa cells were treated with matrine (0, 25, 50 and 100 µg/ml) for 24 h and protein levels of MMP-2 and MMP-9 were detected by western blot analysis. (B) Quantification of relative protein levels of MMP-2 and MMP-9 in HeLa cells. (C) HeLa cells were treated with matrine (0, 25, 50 and 100 µg/ml) for 24 h and then the activities of MMP-2 and MMP-9 were analyzed. (D) Quantification of the activity of MMP-2 and MMP-9 in HeLa cells. Values represented the means ± SD of three independent experiments. *P<0.05 and **P<0.01 vs control group.
Matrine suppresses the expression and activity of MMP-2 and MMP-9. The complex dynamics of tumor invasion and metastasis often involves the destruction of extracellular matrix (ECM) by enzymes such as serine proteases, threonine proteases and matrix metalloproteinases (MMPs) (38). To further explore the potential mechanism by which matrine inhibits cervical cancer invasion and metastasis, we examined the expression and activity of MMP-2 and MMP-9 in HeLa cells exposed to different concentrations of matrine. Western blot analysis showed that matrine significantly reduced the protein levels of MMP-2 and MMP-9 in a concentration-dependent manner (Fig. 3A and B). Gelatin zymography showed that the activities of MMP-2 and MMP-9 were significantly inhibited by matrine in a concentration-dependent manner (Fig. 3C). MMP-2 activity was reduced to 79.98±8.73, 37.5±4.67 and 22.08±1.67%, and MMP-9 activity was reduced to 70.24±7.87, 23.68±4.25 and 21.60±1.39%, in cells treated with 25, 50 and 100 µg/ml of matrine, respectively (Fig. 3D). Collectively, these data suggest that matrine significantly inhibits the expression and activity of MMP-2 and MMP-9.

Matrine inhibits the p38 signaling pathway in cervical cancer cells. Activation of p38 is required for the invasion of human cervical cancer cells (39). Thus, we wondered whether the anti-metastatic effect of matrine is related to the modulation of p38 signaling pathway in cervical cancer cells. Western blot analysis showed that the level of phosphorylated (activated) p38 in HeLa cells was downregulated upon matrine treatment in a concentration-dependent manner (Fig. 4B and C). To confirm that the inhibitory effects of matrine on cell invasion and MMP-2 and MMP-9 expression was associated with the downregulated p38 signaling pathway, HeLa cells were pretreated with a p38 inhibitor (SB203580, 10 µM) for 30 min and then incubated in the presence or absence of matrine (50 µg/ml) for 24 h. The results showed that treatment with SB203580 and matrine
significantly reduced both cell invasion (Fig. 4D and F) and the levels of MMP-2, MMP-9 and p-P38 (Fig. 4E and G). Furthermore, anisomycin, a p38 activator, blocked the effects of matrine (Fig. 5). Taken together, these results reveal that the inhibition of cervical cancer cell invasion and MMP-2 and MMP-9 expression by matrine is mediated by the suppression of the p38 signaling pathway.

In vivo inhibition of cervical cancer tumor growth by matrine. To evaluate the effects of matrine on tumor growth in vivo, we performed nude mouse xenograft assay of HeLa cells as previously described (40). The time courses of HeLa xenograft growth with and without matrine treatment are shown in Fig. 6A. The average volume of xenograft treated with matrine at 21 days after cell implantation was significantly less than that of control group. At the end of the experiment, the xenograft tumors were dissected and weighed. Matrine significantly decreased the solid tumor mass and the inhibitory rate of tumor weight was 58.33% (Fig. 6B). Moreover, we assessed the levels of MMP-2, MMP-9, p38, p-p38, Akt, p-Akt, p65 and p-p65 in the tumors dissected from nude mice. Western blot analysis showed that matrine treatment led to significantly reduced levels of MMP-2, MMP-9 and p38, but had weaker effects on the levels of p-Akt and p-p65 (Fig. 6C). Taken together, these findings suggest that matrine inhibits cervical cancer growth through specific suppression of p38 signaling.

Discussion

In the present study, we confirmed that matrine significantly inhibited the growth of human cervical cancer HeLa and C33A cells in vitro in a dose- and time-dependent manner by inducing apoptosis. In addition, we demonstrated that matrine significantly inhibited the invasive and metastatic ability of cervical cancer cells in vitro by the downregulation of MMPs through inhibiting the p38 signaling pathway.

Recently, natural products have opened up a new avenue for successful cancer treatment because of their pharmacological activity and therapeutic possibilities (41,42). Matrine has been shown as a new antitumor natural product (43). However, the anticancer efficacy of matrine and the underlying mechanisms in cervical cancer are not clear. To explore the role of matrine in cervical cancer, we first performed MTT assay and found that matrine significantly inhibited cervical cancer cell growth in a dose- and time-dependent manner. To rule out the cytotoxicity of matrine, we chose concentrations of 0, 25, 50 and 100 µg/ml matrine for subsequent experiments.

A failure of cancer cells to undergo apoptosis is a common feature of many cancers. Thus, many anticancer drugs activate apoptotic pathways to eliminate cells that harbor genetic damage or divide inappropriately, which is a predominant antitumor mechanism (36). It has been reported that matrine exerts its antitumor effects by inhibiting the proliferation and inducing the apoptosis of gastric cancer cells as well as
three independent experiments with similar results are shown. β and the levels of MMP-2, MMP-9, p38, p-p38, Akt, p-Akt, ERK1/2 and loading control.

signaling cascades, including p38 signaling pathway (27,48-50).

the expression of proteinases is regulated by multiple

leukemic and glioma cells (10,17,44). Consistent with these

previous studies, we confirmed that matrine induced cervical
cancer cell apoptosis in a dose-dependent manner in the range

of 25-100 µg/ml. Taken together, these data indicate that

matrine inhibits the growth of human cervical cancer cells by

inducing apoptosis.

Metastasis is one of the leading causes of cancer-related
death among cervical cancer patients. To further examine
the effects of matrine on cervical cancer cell migration and
invasion, we performed cell migration and invasion assay.

The results showed that matrine could significantly inhibit
the migration and invasion of cervical cancer cells at non-
toxic doses (no more than 100 µg/ml). Zhang et al (33)
demonstrated that matrine could suppress HeLa cell adhesion
and migration, and this was correlated to decreased VASP
phosphorylation. However, the development of metastasis is
a complex series of steps (45,46). Successful implantation
and invasion are closely linked to the degradation of ECM
by MMPs. MMPs, especially MMP-2 and MMP-9, play
critical roles in the degradation of type IV collagen, a major
constituent of the ECM, and are closely related to the invasion
and metastasis of various cancer cells (1,2-3). Consistent with
previous studies (14,47), we found that matrine suppressed
the expression and activity of MMP-2 and MMP-9 in cervical
cancer cells. These results indicate that the anti-metastatic
effect of matrine on HeLa cells is correlated with the down-
regulation of MMP-2 and MMP-9.

The expression of proteinases is regulated by multiple
signaling cascades, including p38 signaling pathway (27,48-50). p38 is relatively inactive in the unphosphorylated form and can be activated rapidly by MAPK kinase-3 and -6 upon exposure to cellular stress or inflammatory cytokines (51-53). p38 signaling pathway induces the expression of MMPs and thereby promotes the degradation of ECM proteins, leading to cell invasion (54). p38 has also been reported as a downstream target of matrine in many cells (34,47). Therefore, we hypothesized that the anti-invasion effect of matrine may be associated with the inhibition of p38 signaling pathway. To confirm it, we determined the level of phosphorylated (activated) p38 and demonstrated that the phosphorylation (activation) of p38 was significantly reduced in HeLa cells treated with matrine, compared to control cells. Furthermore, we employed specific p38 inhibitor (SB203580) and activator (anisomycin). We found that treatment with SB203580 significantly reduced cell invasion, accompanied by decreased MMP-2 and MMP-9 protein expression. Anisomycin could partly abolish the inhibition effects of matrine on the invasion of HeLa cells and the expression and activity of MMP-2/9. These results indicate that matrine inhibits cell invasion and decreases the expression and activity of MMP-2 and MMP-9 via suppressing the activation of p38 signaling pathway in HeLa cells. The mechanisms of action of matrine against cancer cell invasion have been shown to be associated with EGFR/VEGF-VEGFR1-Akt-NF-κB signaling (55). We also noted that matrine produced suppressing effect on activity of Akt and p65, even through weaker. Previous studies demonstrated that S100A8/9 promoted gastric cancer cell migration and invasion through p38 MAPK-dependent NF-κB activation (56). Thus, we presumed that there might be a potential link between p38 and Akt-NF-κB in cervical cancer cells treated with matrine. Therefore, it is necessary to further investigate whether pro-inflammatory cytokines or other signaling pathways contribute to the inhibitory effects of matrine on cervical cancer invasion and metastasis.

In conclusion, we demonstrated the inhibitory effects of
matrine on the growth, invasion and metastatic capabilities of
cervical cancer cells. Mechanistically, we found that matrine
decreased the expression and activity of MMP-2 and MMP-9
via the suppression of p38 signaling pathway. Taken together,
these findings suggest that matrine inhibits the growth and
metastasis of cervical cancer through downregulating the
p38 signaling pathway, and provide evidence that matrine has
potential application in treating cervical cancer progression
and metastasis.

Acknowledgements

We thank Dr Kunlun Chen for excellent technical assistance.

References

52. Lei YC, Lu CL, Chen L, Ge K, Yang LL, Li W and Wu YH: C5a/C5aR pathway is essential for up-regulating SphK1 expression through p38-MAPK activation in acute liver failure. World J Gastroenterol 22: 10148-10157, 2016.

