In vitro and in vivo anti-primary effusion lymphoma activities of fucoidan extracted from Cladosiphon okamuranus Tokida

CHIE ISHIKAWA1,2 and NAOKI MORI1

1Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215; 2Division of Health Sciences, Transdisciplinary Research Organization for Subtropics and Island Studies, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan

Received May 19, 2017; Accepted September 11, 2017

DOI: 10.3892/or.2017.5978

Abstract. Primary effusion lymphoma (PEL) caused by Kaposi's sarcoma-associated herpesvirus (KSHV) is characterized by lymphomatous effusion in body cavities and poor prognosis. There is still no effective treatment for PEL. Fucoidan, a major sulfated polysaccharide isolated from brown seaweeds, has an attractive array of bioactivities such as cancer inhibition. However, the effects of fucoidan on PEL cells remain unclear. We investigated the anti-PEL effects of fucoidan obtained from Cladosiphon okamuranus Tokida cultivated in Okinawa. Fucoidan dose-dependently inhibited the proliferation of KSHV-infected PEL cell lines, and provoked G1 cell cycle arrest, which was accompanied by CDK4 and CDK6 downregulation. Fucoidan also induced apoptosis of PEL cells through caspase-3, -8 and -9 activation; this occurred partly through the downregulation of anti-apoptotic Bcl-xL, Mcl-1 and XIAP proteins. Fucoidan also suppressed nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) (5-8). The KSHV-encoded viral FLICE-inhibitory protein and G protein-coupled receptor mediator activation of NF-κB and AP-1 pathways (6-8). It has been reported that inhibition of NF-κB significantly decreases PEL cell survival (5).

Fucoidan, a sulfated polysaccharide, is abundant in brown seaweeds. It is composed of L-fucose as well as other sugars, such as D-xylose, D-galactose, D-mannose and glucuronic acid (9). Several studies have reported that fucoidan possesses many desired biological effects, such as anticancer and antiviral activities (9,10). Moreover, it is a well-tolerated agent (11,12).

The present study was designed to determine the anti-PEL activity of fucoidan both in vitro and in vivo. The results revealed that fucoidan inhibited constitutively active NF-κB, AP-1 and lymphokine-activated killer T-cell-originated protein kinase (TOPK), leading to G1 cell cycle arrest and apoptosis of PEL cells. Oral administration of fucoidan suppressed PEL progression in a xenograft murine model.

Materials and methods

Reagents. Fucoidan was prepared from the brown algae Cladosiphon okamuranus Tokida cultivated in Okinawa as previously described in detail (13). Nanoparticle fucoidan was also previously described (14). Fucoidan was dissolved in RPMI-1640 medium (cat. no. 30264-56, Nacalai Tesque, Inc., Kyoto, Japan). The primary antibodies against cleaved caspase-3 (cat. no. 9664), caspase-8 (cat. no. 9446), caspase-9 (cat. no. 9501) and poly(ADP-ribose) polymerase (PARP)
cells. Colorimetric readings were performed in an automated microplate reader.

Cell cycle analysis. Cells were stained with the CycleTEST Plus DNA Reagent kit (cat. no. 340242; Becton-Dickinson Immunocytometry Systems, San Jose, CA, USA). The cell cycle distribution was analyzed for 10,000 collected cells by an Epics XL flow cytometer equipped with MultiCycle software (version 3.0; Phoenix Flow Systems, San Diego, CA, USA). The population of nuclei in each phase of the cell cycle was determined.

Western blot analysis. Whole cell extracts were prepared by subjecting fucoidan-treated cells to lysis in lysis buffer [62.5 mM Tris-HCl (pH 6.8) (cat. no. 35434-21), 2% sodium dodecyl sulfate (cat. no. 31607-65), 10% glycerol (cat. no. 17045-65), 6% 2-mercaptoethanol (cat. no. 21438-82; all from Nacalai Tesque, Inc.) and 0.01% bromophenol blue (cat. no. 021-02911; Wako Pure Chemical Industries, Osaka, Japan)]. Lysates were spun to remove insoluble material. Supernatants were collected and protein concentrations were assessed. Protein lysates (20 μg) were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Then, the proteins were transferred onto polyvinylidene difluoride membranes (cat. no. IPVH00010EMD; Millipore, Darmstadt, Germany) and immunoblotted with relevant specific antibodies. Immunoreactive bands were identified by an enhanced chemiluminescence reagent (cat. no. RPN2232; Amersham Biosciences Corp., Piscataway, NJ, USA).

Electrophoretic mobility shift assay (EMSA). To determine NF-κB and AP-1 activation, we prepared nuclear extracts from fucoidan-treated cells and performed EMSA as previously described (17). The obtained nuclear extracts were also subjected to SDS-PAGE. The top strand sequences of the oligonucleotide probes or competitors were as follows: for a consensus NF-κB element of the interleukin-2 receptor α chain (IL-2Rα) gene, 5'-GATCCGGCAGGGGAATCTCCCTAGGTC-3' and for the typical AP-1 element of the IL-8 gene, 5'-GATCCTGATACTACAGGTT-3'. The above underlined sequences are the NF-κB and AP-1 binding sites, respectively. To determine the specificity of the binding, nuclear extracts were preincubated with 100-fold excess of unlabeled oligonucleotides for 15 min. For supershift assays, different antibodies against NF-κB or AP-1 subunits were preincubated with nuclear protein for 45 min at room temperature before the addition of probes. The dried gels were visualized.

PCL xenograft model. Aliquots of 5x10^6 TY-1 cells or 8x10^7 BCBL-1 cells were suspended in sterile RPMI-1640 medium (200 μl), and 5-week-old female C.B-17/Icr-severe combined immune deficiency (SCID) mice (Kyudo, Co., Tosu, Japan) received intraperitoneal injections with a single-cell aliquot. Fucoidan (200 mg/kg for TY-1 and 150 mg/kg for BCBL-1), or vehicle alone, was administered using oral gavage once daily for 5 days per week, and the treatment was continued for 50 days (TY-1) and 56 days (BCBL-1), beginning the day of injection (TY-1) or one day after injection (BCBL-1). PEL expansion in vivo was confirmed by testing the expression of cell surface markers, including cluster of differentiation 30
(CD30) in ascites tumor cells, using flow cytometry. Body weight was recorded weekly as a surrogate measure of tumor progression. All experiments were performed in compliance with the Guidelines for Animal Experimentation of the University of the Ryukyus (Nishihara, Japan) and approved by the Animal Care and Use Committee of the University of the Ryukyus (reference nos. 5885 and A2016097).

Biomarker analysis. Serum and ascitic concentrations of human soluble CD30 (sCD30) (cat. no. RAF091R; BioVendor Inc., Brno, Czech Republic) were assessed by enzyme-linked immunosorbent assay (ELISA), according to the protocol supplied by the manufacturer.

Statistical analysis. Data are expressed as the mean ± standard deviation (SD), unless otherwise stated. Data of two groups were compared with the Student’s t-test. Differences were considered significant at the 95% confidence level when P<0.05.

Results

Effects of fucoidan on PEL cell proliferation and apoptosis. The two different PEL cell lines, BCBL-1 and TY-1, were treated with increasing doses of fucoidan for 72 h. Fucoidan decreased cell proliferation and survival in a dose-dependent fashion in both PEL cell lines, as assessed by WST-8 assay (Fig. 1A).

We also evaluated the effect of fucoidan on cell cycle regulation using flow cytometry. As shown in Fig. 1B and C, upon 24-h culture of fucoidan-treated TY-1 cells, the percentage of cells in the G1 phase increased from 52.1% (in vehicle-treated cells) to 59.6% (in 2 mg/ml fucoidan-treated cells) and 69.3% (in 4 mg/ml fucoidan-treated cells), whereas the percentage of cells in the S phase decreased from 30.5% (in vehicle-treated cells) to 22.1% (in 2 mg/ml fucoidan-treated cells) and 7.5% (in 4 mg/ml fucoidan-treated cells). Thus, fucoidan enhanced accumulation in the G1 phase of the cell cycle in a dose-dependent manner.

In the next step, we investigated the type of cell death induced by fucoidan and found that it increased the number of APO2.7-positive cells in dose- and time-dependent manners (Fig. 2A). APO2.7 antibody reacted with a 38-kDa mitochondrial membrane protein (named 7A6 antigen), which is detected in late apoptotic cells (18). These results revealed that fucoidan induced apoptotic cell death. The apoptotic process was executed by a member of the highly conserved caspase family (19). Western blot analysis revealed that fucoidan dose-dependently induced the cleavage of initiators caspase-8 and -9, and the executioner caspase-3 and its substrate PARP (Fig. 2B). To confirm caspase activation by fucoidan for induction of apoptosis, ELISA was performed with various caspase substrates. PEL cells treated with fucoidan exhibited enhanced activation of caspase-8 and -9, thereby activating effector caspase-3 (Fig. 2C).

Fucoidan induces downregulation of CDK4, CDK6, Bcl-XL, Mcl-1 and XIAP. We further investigated the levels of various molecules involved in cellular proliferation and survival. Western blot analysis revealed dose-dependent downregulation of cyclin-dependent kinases (CDK4 and CDK6) and anti-apoptotic proteins Bcl-xL, Mcl-1 and XIAP in TY-1 cells treated with fucoidan (Fig. 3).
Effect of fucoidan on NF-κB activation. In Fig. 4A, we revealed constitutive NF-κB DNA-binding activity in TY-1 and BCBL-1 cells. This binding reaction was specific because NF-κB, but not AP-1 oligonucleotides, competed with the NF-κB DNA-binding activity (Fig. 4A, lanes 2 and 3). The components of NF-κB DNA-binding complex were analyzed with specific antibodies against five NF-κB family proteins. Preincubation of nuclear extracts of PEL cells with anti-p50, anti-RelA or anti-RelB antibody caused slow migration of the complex (Fig. 4A, lanes 4, 5 and 8). The results indicate the presence of p50, RelA and RelB in the DNA-binding complex in PEL cells.
To examine the effect of fucoidan on NF-κB DNA-binding activity, we incubated PEL cells with fucoidan (2 and 4 mg/ml) for 48 h. The prepared nuclear extracts were analyzed for NF-κB DNA-binding activity. The results revealed that fucoidan decreased NF-κB DNA-binding activity in PEL cells (Fig. 4B). NF-κB is maintained in an inactive status in the cytoplasm of nonstimulated cells through interaction with specific inhibitor, IκBα (20). In response to stimuli, IκBα is phosphorylated and degraded through ubiquitin-dependent proteolysis, resulting in the release of free NF-κB dimers, which translocate to the nucleus to induce transcription of the target genes (20). That fucoidan inhibited NF-κB DNA-binding activity suggests it may act on NF-κB-associated inhibitory protein IκBα. We treated TY-1 cells with fucoidan (2, 4 and 6 mg/ml) for 48 h and IκBα was determined by western blot. Fucoidan dose-dependently inhibited the phosphorylation and degradation of IκBα (Fig. 4C). We also examined the suppression of NF-κB nuclear translocation. The amount of RelA in the nucleus decreased in PEL cells treated with fucoidan for 48 h (Fig. 4D). Lamin B was used as a quality control to assess nuclear fraction purity and loading levels. Fucoidan did not alter the amount of lamin B in PEL cells (Fig. 4D).

Effect of fucoidan on AP-1 activation. We also investigated the DNA-binding activity of AP-1, another transcription factor, in PEL cells. EMSA demonstrated the constitutive formation of an AP-1 protein complex that retarded the electrophoretic mobility of the AP-1 probe (Fig. 4E). An excess of the cold AP-1 probe abrogated the band, whereas excess of the NF-κB probe had no effect (Fig. 4E, lanes 2 and 3). Preincubation of nuclear extracts of PEL cells with anti-JunB or anti-JunD antibody caused slow migration of the complex (Fig. 4E, lanes 9 and 10), suggesting that the AP-1 protein complex in PEL cells is composed of JunB and JunD. Fucoidan-treated PEL cells revealed decreased AP-1 DNA-binding activity (Fig. 4F). Furthermore, fucoidan decreased JunB and JunD protein expression in a dose-dependent manner (Fig. 4G).

Effect of fucoidan on TOPK activation. TOPK, a serine-threonine kinase is known to be upregulated in many types of cancer, including lymphoma and leukemia (21). TOPK is a mitotic kinase activated by the CDK1/cyclin B1 complex to promote cytokinesis, and contributes to oncogenic cellular functions (22). Recently, fucoidan was reported to directly interact with TOPK kinase and inhibit its kinase activity (23).
Furthermore, TOPK directly interacted with and phosphorylated IκBα (24). Therefore, we investigated whether fucoidan influenced the activity of TOPK, an upstream kinase of IκBα. Fucoidan inhibited the phosphorylation of TOPK but not total TOPK protein expression level (Fig. 4C). TOPK is a mitogen-activated protein kinase (MAPK) kinase-like protein kinase (22). However, fucoidan did not alter the phosphorylation of MAPK, including p38, JNK and ERK (data not shown). These results revealed that TOPK may act as an upstream kinase for IκBα but not MAPK in PEL cells.

Treatment with fucoidan suppresses PEL development in vivo. Finally, we investigated whether fucoidan can suppress PEL development in vivo using an established xenograft murine model. TY-1 cells were injected intraperitoneally into SCID mice followed by oral administration of fucoidan or vehicle for 50 days. Fucoidan-treated mice were slimmer than the control, the latter exhibited massive ascites and expansion of the abdomen (Fig. 5A). Furthermore, the body weight increase of the fucoidan-treated mice throughout the 50-day experiment was less marked than that of the control mice (Fig. 5B). The weights of the liver and spleen in native fucoidan-treated mice were less than those of either the control or the nanoparticle fucoidan-treated mice (Fig. 5E). The serum levels of sCD30 appear to be a useful biological tumor marker for the diagnosis and management of PEL (25). ELISA used to determine the circulating levels of sCD30 secreted by BCBL-1 cells revealed an 85 and 45% decrease, respectively, in native fucoidan- and nanofucoidan-treated mice, compared with the control group, albeit statistically insignificant. These results indicate that intraperitoneal inoculation of PEL cells resulted in the development of ascites in SCID mice, and that treatment with fucoidan modulated this process. Furthermore, these effects were dependent on the molecular weight of fucoidan.

Discussion

Fucoidan, a sulfated polysaccharide, is a constituent of brown algae. It has been extensively studied based on its numerous
biological activities, including anticoagulation, antiviral, anti-
tumor, immunomodulatory, anti-inflammatory and antioxidant
activities (9,10,28). We reported previously the antitumor and
antiviral activities of fucoidan extracted from Cladosiphon
okamuranus Tokida cultivated in Okinawa (11-14,29). PEL, an
aggressive neoplasm caused by KSHV, presents as a lymphoma-
tous effusion in body cavities. To address the potential clinical
use of fucoidan, we evaluated the cytotoxic effects of fucoidan
on PEL cell lines and determined the molecular mechanism of
the anti-PEL effect of fucoidan both in vitro and in vivo.

Our results revealed that fucoidan was cytotoxic against
PEL. The cytotoxicity of fucoidan was mediated through cell
cycle arrest and apoptosis, as demonstrated by the results of
cell cycle analysis, apoptosis and determination of expression
levels of cell cycle- and apoptosis-related proteins. Fucoidan
inhibited NF-κB signaling through dephosphorylation of
TOPK and IkBα, and suppressed AP-1 signaling by decreasing
JunB and JunD proteins. CDK4, CDK6, Bcl-xL, XIAP and
JunB are NF-κB-regulatory gene products (30,31). Thus, the
results revealed that the effects of fucoidan on PEL cells were
mediated by dysregulation of various signaling pathways,
including NF-κB, AP-1, and TOPK signaling. TOPK directly
interacted with and phosphorylated IkBα, leading to NF-κB
activation (24), and NF-κB elements contributed to JunB
inducibility (32). These findings demonstrated that fucoidan
targeted TOPK, which led to inactivation of NF-κB that is
required for AP-1 activation. In addition, the in vivo study
revealed that fucoidan exerted anti-PEL activity in SCID mice.
In toxicology studies, fucoidan derived from Laminaria
japonica and Undaria pinnatifida was found to be safe in rats
administered orally at 300 mg/kg per day for 180 days and at
250-1,000 mg/kg per day for 28 days, respectively (33,34). In
our animal model, fucoidan from Cladosiphon okamuranus
Tokida also exhibited little toxicity at 150 mg/kg per day for
56 days and at 200 mg/kg per day for 50 days, respectively.

The effects of fucoidan when used in preparations of
different molecular weights, remain unknown. We previously
demonstrated that the in vivo antitumor activity of fucoidan
was significantly higher for nanoparticle fucoidan than for
native fucoidan in a xenograft osteosarcoma model (14).
However, in the present study, nanoparticle fucoidan had
lower anti-PEL activity compared to native fucoidan in the
SCID mouse model. High-molecular weight fucoidan has
been reported to promote a greater increase in the proportion
of cytotoxic T cells than middle- or low-molecular weight
fucoidan in mice which were fed an experimental diet (35).
SCID mice have a genetic defect that prevents the functional
native fucoidan in mice which were fed an experimental diet (35).

Collectively, our results demonstrated that fucoidan has
potent anti-PEL activity both in vitro and in vivo. Fucoidan
directly inhibited the growth of PEL cells by inducing cell
cycle arrest and apoptosis. Future studies should explore
the mechanisms of action of fucoidan when used at various
molecular weights on PEL cells or immune cells. The results
presented here suggest that fucoidan could be potentially
useful for the treatment of PEL.

Acknowledgements
We thank Dr Harutaka Katano for providing TY-1 and
BCBL-1, and Kancheh Bio Co. (Okinawa, Japan) for providing
native and nanoparticle fucoidan. This study was supported
in part by JSPS KAKENHI (grant nos: 15K18414, 25461428
and 17K07175). This study was funded by Kancheh Bio Co.
(Okinawa, Japan).

References
for primary effusion lymphoma. Intractable Rare Dis Res 3:
63-64, 2014.
2. Nador RG, Cesarman E, Chadburn A, Dawson DB, Ansari MQ,
Sald J and Knowles DM: Primary effusion lymphoma: A distinct
clinicopathologic entity associated with the Kaposi's sarcoma-
3. Chen YB, Rahemtullah A and Hochberg E: Primary effusion
5. Keller SA, Schattner EJ and Cesarman E: Inhibition of NF-
κB/p52B induces apoptosis of KSHV-infected primary
6. GopalaKrishnan R, Matta H and Chaudhary PM: A purine
scaffold HSP90 inhibitor BIB0210 has selective activity against
KSHV-associated primary effusion lymphoma and blocks vFLIP
7. Cannon ML and Cesarman E: The KSHV G protein-coupled
receptor signals via multiple pathways to induce transcription
factor activation in primary effusion lymphoma cells. Oncogene
herpesvirus encoded vFLIP induces cellular IL-6 expression:
The role of the NF-κB/p52B and JNK/AP1 pathways. Oncogene
and mechanisms of marine polysaccharides: An overview. Mar
11. Mori N, Nakasone K, Tomimori K and Ishikawa C: Beneficial
effects of fucoidan in patients with chronic hepatitis C virus
12. Araya N, Takahashi K, Sato T, Nakamura T, Sawa C,
therapy decreases the proviral load in patients with human T-lymphotropic virus type-I-associated neurological
Mori N: Anti-tumor activity of fucoidan is mediated by nitric
oxide released from macrophages. Int J Oncol 40: 251-260,
2012.
effects of fucoidan nanoparticles against osteosarcoma. Mar
and Ganem D: Lytic growth of Kaposi's sarcoma-associated
herpesvirus (human herpesvirus 8) in culture. Nat Med 2:
342-346, 1996.


