Ribosomal protein S3 regulates XIAP expression independently of the NF-κB pathway in breast cancer cells

  • Authors:
    • Hisako Ono
    • Yosuke Iizumi
    • Wakana Goi
    • Yoshihiro Sowa
    • Tetsuya Taguchi
    • Toshiyuki Sakai
  • View Affiliations

  • Published online on: September 27, 2017     https://doi.org/10.3892/or.2017.6008
  • Pages: 3205-3210
Metrics: HTML 0 views | PDF 0 views     Cited By (CrossRef): 0 citations

Abstract

The X-linked inhibitor of apoptosis (XIAP) confers the resistance of various types of cancer to standard chemotherapeutic agents such as anthracycline and taxane. In breast cancer, XIAP is known to be overexpressed. However, the mechanisms underlying the overexpression of XIAP remain currently unclear. In order to elucidate the mechanisms responsible for the overexpression of the XIAP protein in breast cancer, we attempted to clarify the mechanisms by which the natural compound curcumin downregulates XIAP in breast cancer cells. In that process, we identified the ribosomal protein S3 (RPS3) as a curcumin‑binding protein using curcumin-fixed magnetic FG beads. The knockdown of RPS3 inhibited cell growth and induced apoptosis as well as the downregulation of XIAP in breast cancer cells. Although RPS3 is known to directly bind to and activate the nuclear factor-κB (NF-κB), which induces several anti-apoptotic genes such as XIAP, the knockdown of RPS3 unexpectedly reduced the levels of the XIAP protein, but not the mRNA level of XIAP and the transcription factor NF-κB activity. These results reveal that RPS3 upregulates XIAP independently of the NF-κB pathway in human breast cancer cells.

References

1 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Baselga J, Campone M, Piccart M, Burris HA III, Rugo HS, Sahmoud T, Noguchi S, Gnant M, Pritchard KI, Lebrun F, et al: Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 366:520–529. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, Pegram M, Oh DY, Diéras V, Guardino E, et al EMILIA Study Group, : Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 367:1783–1791. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Swain SM, Baselga J, Kim SB, Ro J, Semiglazov V, Campone M, Ciruelos E, Ferrero JM, Schneeweiss A, Heeson S, et al CLEOPATRA Study Group, : Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med. 372:724–734. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Rastogi P, Anderson SJ, Bear HD, Geyer CE, Kahlenberg MS, Robidoux A, Margolese RG, Hoehn JL, Vogel VG, Dakhil SR, et al: Preoperative chemotherapy: Updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol. 26:778–785. 2008. View Article : Google Scholar : PubMed/NCBI

6 

Smith IC, Heys SD, Hutcheon AW, Miller ID, Payne S, Gilbert FJ, Ah-See AK, Eremin O, Walker LG, Sarkar TK, et al: Neoadjuvant chemotherapy in breast cancer: Significantly enhanced response with docetaxel. J Clin Oncol. 20:1456–1466. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Ekert PG, Silke J and Vaux DL: Caspase inhibitors. Cell Death Differ. 6:1081–1086. 1999. View Article : Google Scholar : PubMed/NCBI

8 

Chai J, Shiozaki E, Srinivasula SM, Wu Q, Datta P, Alnemri ES and Shi Y: Structural basis of caspase-7 inhibition by XIAP. Cell. 104:769–780. 2001. View Article : Google Scholar : PubMed/NCBI

9 

Huang Y, Park YC, Rich RL, Segal D, Myszka DG and Wu H: Structural basis of caspase inhibition by XIAP: Differential roles of the linker versus the BIR domain. Cell. 104:781–790. 2001. View Article : Google Scholar : PubMed/NCBI

10 

Riedl SJ, Renatus M, Schwarzenbacher R, Zhou Q, Sun C, Fesik SW, Liddington RC and Salvesen GS: Structural basis for the inhibition of caspase-3 by XIAP. Cell. 104:791–800. 2001. View Article : Google Scholar : PubMed/NCBI

11 

Shiozaki EN, Chai J, Rigotti DJ, Riedl SJ, Li P, Srinivasula SM, Alnemri ES, Fairman R and Shi Y: Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell. 11:519–527. 2003. View Article : Google Scholar : PubMed/NCBI

12 

de Moraes G Nestal, Delbue D, Silva KL, Robaina MC, Khongkow P, Gomes AR, Zona S, Crocamo S, Mencalha AL, Magalhães LM, et al: FOXM1 targets XIAP and Survivin to modulate breast cancer survival and chemoresistance. Cell Signal. 27:2496–2505. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Lima RT, Martins LM, Guimarães JE, Sambade C and Vasconcelos MH: Specific downregulation of bcl-2 and xIAP by RNAi enhances the effects of chemotherapeutic agents in MCF-7 human breast cancer cells. Cancer Gene Ther. 11:309–316. 2004. View Article : Google Scholar : PubMed/NCBI

14 

Bilim V, Kasahara T, Hara N, Takahashi K and Tomita Y: Role of XIAP in the malignant phenotype of transitional cell cancer (TCC) and therapeutic activity of XIAP antisense oligonucleotides against multidrug-resistant TCC in vitro. Int J Cancer. 103:29–37. 2003. View Article : Google Scholar : PubMed/NCBI

15 

Sasaki H, Sheng Y, Kotsuji F and Tsang BK: Down-regulation of X-linked inhibitor of apoptosis protein induces apoptosis in chemoresistant human ovarian cancer cells. Cancer Res. 60:5659–5666. 2000.PubMed/NCBI

16 

Jaffer S, Orta L, Sunkara S, Sabo E and Burstein DE: Immunohistochemical detection of antiapoptotic protein X-linked inhibitor of apoptosis in mammary carcinoma. Hum Pathol. 38:864–870. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Xu YC, Liu Q, Dai JQ, Yin ZQ, Tang L, Ma Y, Lin XL and Wang HX: Tissue microarray analysis of X-linked inhibitor of apoptosis (XIAP) expression in breast cancer patients. Med Oncol. 31:7642014. View Article : Google Scholar : PubMed/NCBI

18 

Stehlik C, de Martin R, Kumabashiri I, Schmid JA, Binder BR and Lipp J: Nuclear factor (NF)-kappaB-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis. J Exp Med. 188:211–216. 1998. View Article : Google Scholar : PubMed/NCBI

19 

Warner JR and McIntosh KB: How common are extraribosomal functions of ribosomal proteins? Mol Cell. 34:3–11. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Zhang Y and Lu H: Signaling to p53: Ribosomal proteins find their way. Cancer Cell. 16:369–377. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Wan F, Anderson DE, Barnitz RA, Snow A, Bidere N, Zheng L, Hegde V, Lam LT, Staudt LM, Levens D, et al: Ribosomal protein S3: A KH domain subunit in NF-kappaB complexes that mediates selective gene regulation. Cell. 131:927–939. 2007. View Article : Google Scholar : PubMed/NCBI

22 

Kim J, Chubatsu LS, Admon A, Stahl J, Fellous R and Linn S: Implication of mammalian ribosomal protein S3 in the processing of DNA damage. J Biol Chem. 270:13620–13629. 1995. View Article : Google Scholar : PubMed/NCBI

23 

Woo JH, Kim YH, Choi YJ, Kim DG, Lee KS, Bae JH, Min DS, Chang JS, Jeong YJ, Lee YH, et al: Molecular mechanisms of curcumin-induced cytotoxicity: Induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis. 24:1199–1208. 2003. View Article : Google Scholar : PubMed/NCBI

24 

Park S, Cho DH, Andera L, Suh N and Kim I: Curcumin enhances TRAIL-induced apoptosis of breast cancer cells by regulating apoptosis-related proteins. Mol Cell Biochem. 383:39–48. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Iizumi Y, Oishi M, Taniguchi T, Goi W, Sowa Y and Sakai T: The flavonoid apigenin downregulates CDK1 by directly targeting ribosomal protein S9. PLoS One. 8:e732192013. View Article : Google Scholar : PubMed/NCBI

26 

Yamaguchi N, Ito T, Azuma S, Ito E, Honma R, Yanagisawa Y, Nishikawa A, Kawamura M, Imai J, Watanabe S, et al: Constitutive activation of nuclear factor-kappaB is preferentially involved in the proliferation of basal-like subtype breast cancer cell lines. Cancer Sci. 100:1668–1674. 2009. View Article : Google Scholar : PubMed/NCBI

27 

Lohrum MAE, Ludwig RL, Kubbutat MH, Hanlon M and Vousden KH: Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell. 3:577–587. 2003. View Article : Google Scholar : PubMed/NCBI

28 

Dai MS and Lu H: Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem. 279:44475–44482. 2004. View Article : Google Scholar : PubMed/NCBI

29 

Dai MS, Zeng SX, Jin Y, Sun XX, David L and Lu H: Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol Cell Biol. 24:7654–7668. 2004. View Article : Google Scholar : PubMed/NCBI

30 

Lin NU, Vanderplas A, Hughes ME, Theriault RL, Edge SB, Wong YN, Blayney DW, Niland JC, Winer EP and Weeks JC: Clinicopathologic features, patterns of recurrence, and survival among women with triple-negative breast cancer in the National Comprehensive Cancer Network. Cancer. 118:5463–5472. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P and Narod SA: Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin Cancer Res. 13:4429–4434. 2007. View Article : Google Scholar : PubMed/NCBI

32 

Liu S, Zhang P, Chen Z, Liu M, Li X and Tang H: MicroRNA-7 downregulates XIAP expression to suppress cell growth and promote apoptosis in cervical cancer cells. FEBS Lett. 587:2247–2253. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Xie Y, Tobin LA, Camps J, Wangsa D, Yang J, Rao M, Witasp E, Awad KS, Yoo N, Ried T, et al: MicroRNA-24 regulates XIAP to reduce the apoptosis threshold in cancer cells. Oncogene. 32:2442–2451. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Li X, Chen W, Zeng W, Wan C, Duan S and Jiang S: microRNA-137 promotes apoptosis in ovarian cancer cells via the regulation of XIAP. Br J Cancer. 116:66–76. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Ren Y, Han X, Yu K, Sun S, Zhen L, Li Z and Wang S: microRNA-200c downregulates XIAP expression to suppress proliferation and promote apoptosis of triple-negative breast cancer cells. Mol Med Rep. 10:315–321. 2014.PubMed/NCBI

36 

Wang C, Ju H, Shen C and Tong Z: miR-429 mediates δ-tocotrienol-induced apoptosis in triple-negative breast cancer cells by targeting XIAP. Int J Clin Exp Med. 8:15648–15656. 2015.PubMed/NCBI

37 

Ryu YS, Lee Y, Lee KW, Hwang CY, Maeng JS, Kim JH, Seo YS, You KH, Song B and Kwon KS: TRIM32 protein sensitizes cells to tumor necrosis factor (TNFα)-induced apoptosis via its RING domain-dependent E3 ligase activity against X-linked inhibitor of apoptosis (XIAP). J Biol Chem. 286:25729–25738. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Li C, Jung S, Lee S, Jeong D, Yang Y, Kim KI, Lim JS, Cheon CI, Kim C, Kang YS, et al: Nutrient/serum starvation derived TRIP-Br3 down-regulation accelerates apoptosis by destabilizing XIAP. Oncotarget. 6:7522–7535. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Wang N, Feng Y, Zhu M, Siu FM, Ng KM and Che CM: A novel mechanism of XIAP degradation induced by timosaponin AIII in hepatocellular carcinoma. Biochim Biophys Acta. 1833:2890–2899. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Hosokawa N, Hosokawa Y, Sakai T, Yoshida M, Marui N, Nishino H, Kawai K and Aoike A: Inhibitory effect of quercetin on the synthesis of a possibly cell-cycle-related 17-kDa protein, in human colon cancer cells. Int J Cancer. 45:1119–1124. 1990. View Article : Google Scholar : PubMed/NCBI

41 

Horinaka M, Yoshida T, Shiraishi T, Nakata S, Wakada M, Nakanishi R, Nishino H, Matsui H and Sakai T: Luteolin induces apoptosis via death receptor 5 upregulation in human malignant tumor cells. Oncogene. 24:7180–7189. 2005. View Article : Google Scholar : PubMed/NCBI

42 

Matsui TA, Sowa Y, Yoshida T, Murata H, Horinaka M, Wakada M, Nakanishi R, Sakabe T, Kubo T and Sakai T: Sulforaphane enhances TRAIL-induced apoptosis through the induction of DR5 expression in human osteosarcoma cells. Carcinogenesis. 27:1768–1777. 2006. View Article : Google Scholar : PubMed/NCBI

43 

Taniguchi H, Yoshida T, Horinaka M, Yasuda T, Goda AE, Konishi M, Wakada M, Kataoka K, Yoshikawa T and Sakai T: Baicalein overcomes tumor necrosis factor-related apoptosis-inducing ligand resistance via two different cell-specific pathways in cancer cells but not in normal cells. Cancer Res. 68:8918–8927. 2008. View Article : Google Scholar : PubMed/NCBI

44 

Ichikawa M, Sowa Y, Iizumi Y, Aono Y and Sakai T: Resibufogenin induces G1-phase arrest through the proteasomal degradation of cyclin D1 in human malignant tumor cells. PLoS One. 10:e01298512015. View Article : Google Scholar : PubMed/NCBI

45 

Kume K, Iizumi Y, Shimada M, Ito Y, Kishi T, Yamaguchi Y and Handa H: Role of N-end rule ubiquitin ligases UBR1 and UBR2 in regulating the leucine-mTOR signaling pathway. Genes Cells. 15:339–349. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Taniguchi T, Iizumi Y, Watanabe M, Masuda M, Morita M, Aono Y, Toriyama S, Oishi M, Goi W and Sakai T: Resveratrol directly targets DDX5 resulting in suppression of the mTORC1 pathway in prostate cancer. Cell Death Dis. 7:e22112016. View Article : Google Scholar : PubMed/NCBI

47 

Watanabe M, Iizumi Y, Sukeno M, Iizuka-Ohashi M, Sowa Y and Sakai T: The pleiotropic regulation of cyclin D1 by newly identified sesaminol-binding protein ANT2. Oncogenesis. 6:e3112017. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

November 2017
Volume 38 Issue 5

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Ono, H., Iizumi, Y., Goi, W., Sowa, Y., Taguchi, T., & Sakai, T. (2017). Ribosomal protein S3 regulates XIAP expression independently of the NF-κB pathway in breast cancer cells. Oncology Reports, 38, 3205-3210. https://doi.org/10.3892/or.2017.6008
MLA
Ono, H., Iizumi, Y., Goi, W., Sowa, Y., Taguchi, T., Sakai, T."Ribosomal protein S3 regulates XIAP expression independently of the NF-κB pathway in breast cancer cells". Oncology Reports 38.5 (2017): 3205-3210.
Chicago
Ono, H., Iizumi, Y., Goi, W., Sowa, Y., Taguchi, T., Sakai, T."Ribosomal protein S3 regulates XIAP expression independently of the NF-κB pathway in breast cancer cells". Oncology Reports 38, no. 5 (2017): 3205-3210. https://doi.org/10.3892/or.2017.6008