Puerarin inhibits non-small cell lung cancer cell growth via the induction of apoptosis

YEFANG HU1, XI LI2, LING LIN1, SITING LIANG1 and JIAN YAN1

1Pharmacy Department, Guilin Traditional Chinese Medicine Hospital, Guilin, Guangxi 541002;2Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, P.R. China

Received May 29, 2017; Accepted December 12, 2017

DOI: 10.3892/or.2018.6234

Abstract. Puerarin, an isoflavone isolated from Kudzu roots, has been demonstrated to have beneficial effect on cardiovascular and cerebral vascular diseases. Recently research has revealed that puerarin exerts an anticancer role in many different types of cancer. The aim of the present study was to investigate the antitumor effects of puerarin on non-small cell lung cancer (NSCLC). Treatment of puerarin significantly inhibited the growth of NSCLC cell lines as determined by CCK-8 kit \textit{in vitro}. Flow cytometry results indicated that puerarin treatments promoted NSCLC cell apoptosis. This result was further confirmed by western blot analysis of expression levels of proteins involved in the mitochondrial-mediated apoptosis pathway. Moreover, puerarin slightly induced cell autophagy through the PI3K/Akt and MAPK/Erk1/2 signaling pathways. In addition, a tumor xenograft model was established using nude mice, and the inhibitory effects on tumor growth by puerarin treatment were also detected. Taken together, these findings demonstrated that puerarin has anticancer activities and puerarin is a potential therapeutic agent for lung cancer.

Introduction

Lung cancer is the most common cancer and the leading cause of cancer-related mortality in males worldwide with roughly 1.8 million new cases diagnosed in 2012 (13% of all cancers) (1). Risk factors including exposure to environmental and occupational carcinogens have been associated with an increased incidence of lung cancer (2). It is well established that lung cancer is a clinically and pathologically heterogeneous disease and has been classified into two main histological types non-small cell lung cancer (NSCLC) including squamous cell carcinoma, adenocarcinoma and large cell carcinoma and small cell lung cancer based on the origin of epithelial cell precursors (3). NSCLC accounts for \~83\% of all newly diagnosed lung cancers, and most patients (70\%) are diagnosed with advanced disease (4). Despite treatment advancements, many patients with recurrent disease fail to respond effectively to chemotherapy due to the development of resistance with treatment. Following treatment overall survival remains poor with 5-year survival estimates globally ranging from 10 to 20\% (5-7). Therefore, it is critical to find new treatment options against this deadly disease.

Natural compounds, isolated and exploited from plants, have been reported to be involved in the modulation of several biological processes, thus showing a great potential to be translated into clinical use (8-10). Moreover, various members of these families of compounds have the ability to modulate signaling pathways as well as to regulate the expression of genes involved in cell cycle regulation, differentiation, and apoptosis (11). Besides being useful in prevention, some of these molecules could also be helpful for the treatment of cancer, especially in combination with other drugs (12,13). Natural compounds often hold unusual structural features which cannot be easily mimicked (14). Therefore, such compounds may serve as an invaluable source of drug discovery for diverse diseases. However, despite the extensive attention focused on natural products, their exact regulatory mechanisms remain to be explored.

Puerarin (daidzein 8-C-glucoside, C\textsubscript{21}H\textsubscript{20}O\textsubscript{9}) is a major isoflavonoid compound, isolated from the herb Radix Puerariae (15,16). Previous studies have shown that puerarin has beneficial effects on cardiovascular and cerebrovascular diseases, including coronary artery disease, heart failure, hypertension and myocardial infarction (17-19). In addition, recently studies have found that puerarin has an anticancer effect on tumor cells (20). Puerarin was found to inhibit HT29 cell growth by enhancing the anti-proliferative effects of other anti-neoplastic agents (21). Co-treatment of puerarin and 5-fluorouracil had a synergistic antitumor effect in gastric carcinoma (12). Moreover, puerarin inhibited cell growth and induced apoptosis in breast cancer and hepatocellular carcinoma cells (22,23). Although puerarin inhibits the cell growth and induces apoptosis in many cancer types, there exists...
sparse research on the effectiveness of puerarin on NSCLC, and the underlying mechanism of its protective effects remains elusive. The aim of present study was to explore the inhibitory effect of puerarin on NSCLC cells, and elucidate the potential mechanisms of puerarin in lung cancer.

Materials and methods

Cell culture. NCI-H441 and NCI-H460 human lung adenocarcinoma cell lines were purchased from the American Type Culture Collection (ATCC; Manassas, VA, USA). Cells were authenticated on the basis of viability, recovery, growth and morphology. All cells were cultured in RPMI-1640 medium (Sigma-Aldrich, St. Louis, MO, USA), containing 10% heat-inactivated fetal bovine serum (Thermo Fisher Scientific, Inc., Waltham, MA, USA) at 37˚C with 5% CO₂ in a tissue culture incubator. These cells are regularly tested to ensure that they are mycoplasma-free.

Cell culture inhibition studies. The inhibitory effect of puerarin on NCI-H441 or NCI-H460 cell growth in vitro was measured by Cell Counting Kit-8 (CCK-8; Sigma-Aldrich) according to the protocol of the manufacturer. Briefly, NCI-H441 and NCI-H460 cells were seeded in a 96-well plate at a density of 3,000 cells/well. Then the cells were treated with puerarin (5, 10 and 20 µM) for different time-points. A volume of 1/10 of the medium Cell Counting Kit solution was added to each well, and the plates were incubated for an additional 2 h (at 37˚C with 5% CO₂). The optical density was then determined at a wavelength of 450 nm using a microplate reader (Bio-Rad Laboratories, Inc., Hercules, CA, USA). Each experiment was performed in triplicate and the results are presented as the inhibition rate (IR), which was calculated using the following formula: IR (%) = [(A - B)/A] x 100, where A and B are the absorbance of the control and sample group following different time-points of incubation, respectively.

Annexin V/PI staining. Dead Cell Apoptosis kit with Annexin V-FITC and propidium iodide (PI) (Invitrogen, Carlsbad, CA, USA) was used according to the manufacturer’s instructions to quantify the percentage of cells undergoing apoptosis. Briefly, NCI-H441 cells were exposed to puerarin (5, 10 and 20 µM) for 72 h. Next, the cells were washed twice with cold PBS and resuspended in binding buffer at a concentration of 1x10⁶ cells/ml. Then, 5 µl of Annexin V-FITC and 10 µl PI were added, and the cells were incubated for 5 min at room temperature in dark. After incubation, 200 µl of binding buffer was added and the cells were analyzed immediately by flow cytometry (BD Biosciences, Franklin Lakes, NJ, USA). The flow cytometric analysis was performed using CellQuest software (BD Biosciences). Annexin V+/PI- cells were identified as apoptotic cells, and Annexin V+/PI+ cells were identified as necrotic cells. The entire procedure was repeated three times for each sample.

Western blot analysis. After treatment with puerarin for 72 h, NCI-H441 cells were lysed, and total proteins were extracted. Protein concentration was determined using the BCA protein assay kit (Thermo Fisher Scientific, Inc.). After quantification, 30 µg of protein was loaded for each group, and electrophoresis was performed on 10% polyacrylamide SDS gel. Following electrophoresis, the gel was blotted onto polyvinylidene fluoride membranes (Millipore, Billerica, MA, USA). After blocking in a 5% non-fat dry milk solution in washing buffer containing 10 mmol/l Tris (pH 7.5), 150 mM NaCl, and 0.05% Tween-20, the membranes were incubated overnight at 4˚C with different antibodies: anti-Bax (#5023), anti-Bcl2 (#3498), anti-cleaved caspase-3 (#9664), anti-Atg5 (#2630), anti-LC3 (#12741), anti-phospho-Akt (#4060), anti-Akt (#4691), anti-phospho-ERK (#4370), anti-ERK (#9102) and anti-β-actin (#4970) (all dilutions, 1:1,000; all from Santa Cruz Biotechnology, Inc.). The membranes were washed three times with washing buffer containing 0.05% Tween-20, the membranes were incubated for 2 h with horseradish peroxidase-coupled secondary antibodies at room temperature. Signals were detected using the ECL kit (Amersham Pharmacia Biotech; GE Healthcare, Chicago, IL, USA).

Monodansylcadaverine (MDC) staining. The autofluorescent agent monodansylcadaverine (MDC) (Sigma-Aldrich) was used as a specific autophagolysosome marker to analyze the autophagic process. After treatment with puerarin for 72 h, NCI-H441 cells were induced to autophagy by 100 nM rapamycin, and then were incubated with 0.05 mM MDC in PBS at 37˚C for 10 min. After incubation, the cells were washed three times with PBS and the quantitative analysis of MDC staining was assessed by flow cytometry (BD Biosciences).

Xenografts in nude mice. Six-week-old male BALB/c nu/nu mice were purchased from Beijing Vital River Laboratory Animal Technology Co. (Beijing, China) and maintained under specific pathogen-free conditions. All mice weighed 16-18 g and were bred in autoclaved, filter-top, microisolator cages, which were kept in an isolator unit with filtered air. The mice had access to water and food ad libitum. The mice were inoculated subcutaneously with 1x10⁶ NCI-H441 cells per mouse and the tumor sizes were measured using micrometer calipers. Puerarin was solubilized in normal saline buffer. When tumors grew to a mean volume of 100 mm³, the mice were randomly divided into the following four groups (n=6/group): normal saline (vehicle), puerarin (25 mg/kg/day), puerarin (50 mg/kg/day), and puerarin (100 mg/kg/day), which was injected by oral gavage daily for 5 weeks. The tumor volume (TV) was calculated using the following formula: TV (mm³) = d² x (D/2), where d and D are the shortest and longest diameters, respectively. The tumor sizes and tumor weights of the mice were measured weekly. The mice were sacrificed by using CO₂ asphyxiation at the end of 5 weeks and the tumors were removed, weighed and measured for additional analyses. All animal procedures, which complied with the National
Institutes of Health guide for the Care and Use of Laboratory Animals (24), were approved by the Committee on Animal Experimentation of Guangxi Normal University.

TUNEL assay. Sections of each tumor xenograft were fixed in 4% formaldehyde, dehydrated with an ethanol gradient, embedded in paraffin, dewaxed and rehydrated with a decreasing ethanol gradient (100, 95, 90, 80 and 70%), according to standard instructions. An *in situ* apoptosis detection kit (Roche Molecular Systems Inc., Branchburg, NJ, USA) was used to detect apoptosis. All procedures were performed according to the manufacturer's instructions. The specimens were incubated with proteinase K [15 µg/ml in 10 mM Tris/HCl (pH 7.5)] for 20 min at room temperature after being dewaxed and rehydrated. Next, the specimens were rinsed with 3% H$_2$O$_2$, and incubated with equilibration buffer and terminal deoxynucleotidyl transferase (Beyotime Institute of Biotechnology). The specimens were then incubated with an anti-digoxigenin-peroxidase conjugate. Finally, the 3,3'-diaminobenzidine substrate was added to react with the peroxidase and the specimens were counterstained with hematoxylin, mounted and observed under a microscope.

Statistical analysis. All values are presented as the mean ± standard deviation. Differences were determined by two-tailed Student's t-test and one-way ANOVA using the SPSS 20.0 statistical software (SPSS, Inc., Chicago, IL, USA). P-values of <0.05 were indicative of a statistically significant result.

Results

Puerarin inhibits lung carcinoma cell growth. The structure of puerarin is shown in Fig. 1A. To evaluate the effects of puerarin on cell growth, human lung adenocarcinoma NCI-H441 cells were treated with different concentrations of puerarin, and cell viability was determined by Cell Counting Kit-8 (CCK-8) at different times after treatment. As shown in Fig. 1B, puerarin inhibited the growth of NCI-H441 cells in a time- and dose-dependent manner (with increasing concentrations from 5 to 20 µM), and showed significant inhibition at concentrations of 10 and 20 µM after puerarin treatment for 24, 48 and 72 h. Cell morphology and density were also observed under a microscope after a 72-h treatment at the concentration of 20 µM. Consistent with the cell growth results, there was a significant reduced cell density in the puerarin-treated cells.
Hu et al.: PuERARIN INHIBITS NSCLC

Compared with the vehicle-treated cells (Fig. 1C). Moreover, cell morphology turned from a round shape into a spreading shape with good morphology, indicating that puerearin may not only inhibit cell growth, but also induce cell apoptosis. Similarly, puerearin also inhibited the growth of NCI-H460 cells in a time- and dose-dependent manner (Fig. 1D). Compared with the NCI-H460 cell line, NCI-H441 was more sensitive to puerearin. Therefore, the NCI-H441 cell line was selected for the following experiments.

Puerearin induces lung cancer cell apoptosis. Apoptosis is one of the predominant types of programmed cell death which involves a series of biochemical events leading to specific cell morphologic characteristics, including cell shrinkage, nuclear fragmentation, chromatin condensation and chromosomal DNA fragmentation. As observed in Fig. 1A and B, NCI-H441 cells exhibited apoptosis characteristics after puerearin treatment, thus, flow cytometric analysis by Annexin V and PI staining was performed to examine the proportion of apoptotic cells. Data indicated that puerearin treatment significantly increased the number of early apoptotic cells (Annexin V+/PI−) and late apoptotic cells (Annexin V+/PI+) in a dose-dependent manner (Fig. 2A and B). In order to verify the apoptotic mechanism, the expression of the mitochondrial pathway proteins Bax and Bcl-2 was detected. As shown in Fig. 2C, the expression of Bax was upregulated along with increasing concentrations of puerearin. In contrast, the levels of Bcl-2 were decreased, leading to an increase in cleaved caspase-3. The relative protein levels normalized by β-actin are shown in Fig. 2D. Similarly, puerearin induced apoptosis in the NCI-H460 cells in a dose-dependent manner (Fig. 2E and F).

Puerearin slightly induces NCI-H441 cell autophagy. Since it has been reported that puerearin attenuates anoxia/reoxygenation injury (25) or prevents cardiac hypertrophy (26) through activation of autophagy, we investigated the relationship between puerearin and autophagy in tumor cells. Therefore, we detected the effect of puerearin treatment on NCI-H441 cell autophagy by using MDC staining assay. The positive staining of autophagosomes was measured via flow cytometry and the MDC-positive rate was calculated (Fig. 3A). There was a slight increase in the MDC-positive rate following puerearin treatment.
puerarin treatment (20 µM) compared with the control group. Rapamycin, a specific inhibitor of mTOR, was used as a positive control of autophagy. To further confirm puerarin-induced NCI-H441 cell autophagy, western blot analysis was performed to detect the alteration of essential molecules involved in autophagy. The expression of Atg5, autophagy protein 5, was gradually upregulated in a concentration-dependent manner. In contrast, the level of LC3-I, microtubule-associated protein 1 light chain 3 type I, was decreased. However, the expression of LC3-II, which correlates with the extent of autophagosomes, was not detectable in this cell line. Cells treated with rapamycin showed a strong signal of Atg5 and LC3-II, used as a positive control of autophagy (Fig. 3B and C).

Puerarin induces cell autophagy via the PI3K/Akt and ERK pathway. Since puerarin activated NCI-H441 cell autophagy, PI3K/Akt and ERK pathway activation, which are related to cell autophagy, was also determined by western blot analysis. As shown in Fig. 4A, the phosphorylation levels of Akt and ERK were extremely reduced after puerarin treatment. However, the total protein levels were not affected. BEZ235, an inhibitor of PI3K/mTOR, was used as a control for the inhibition of phosphorylation. The relative protein levels normalized by total Akt or ERK expression are shown in Fig. 4B.

Puerarin prevents tumor development in vivo. The effect of puerarin on the growth of primary tumor xenografts in nude mice was examined. Tumor volume was recorded every week. The volumes of the tumors in the treatment groups were significantly reduced in a dose-dependent manner compared with those in the control group, while the inhibition rate in the 100 mg/kg of puerarin treatment group was more highly significant than that in the other three groups (Fig. 5A). Representative figures of tumor dimensions in nude mice at the end of the experiment are shown in Fig. 5B. At the end of the experiment, the tumors were harvested and weighed in each group (Fig. 5C). In addition, there was no significant body weight loss in each group, which indicated that puerarin treatments were tolerable.

Detection of apoptotic cells in the xenograft tumor tissues. At the end of the experiment, 24 mice were necropsied, and
Figure 5. Effect of puerarin on tumor growth in xenograft nude mice. (A) Tumor volumes in xenograft tumors derived from NCI-H441 cells in nude mice were measured every week after treatment of puerarin (25, 50 and 100 mg/kg). Points indicate mean values (*P<0.01 compared with the vehicle control, n=6). (B) Representative images of tumor dimensions at the end of the experiment. (C) Tumor weights at the end of the experiment (*P<0.05, **P<0.01 compared with the vehicle control, n=6). (D) Body weights of mice were measured weekly (n=6).

Figure 6. Puerarin induces cell apoptosis in xenograft nude mice. (A) Representative images of apoptotic cells detected in xenograft tumor tissues using TUNEL assay. Apoptotic cells appeared brown and are indicated by arrows (magnification, x200). (B) Quantified results of the TUNEL assay (*P<0.01, n=3).
the subcutaneous tumor tissue sections were used for detecting apoptotic cells by TUNEL assay. As shown in Fig. 6A, significant cell death had occurred in the tumor masses in the puerarin treatment groups, when compared with that of the vehicle group. The TUNEL-positive ratio was calculated by counting the positive-stained cells, which was then divided by the total cell number (Fig. 6B).

Discussion

Puerarin is the most important phytoestrogen extracted from the dried root of *Pueraria lobata*, which is a commonly used traditional Chinese herb. Researchers have concentrated on the pharmacological activities of puerarin, which displays a series of beneficial activities on hangover, cardiovascular disease, osteoporosis, neurological dysfunction, fever, and liver injury in clinical treatment and experimental research (27). In addition, more and more studies focus on the role of puerarin in cancer: puerarin inhibited cell growth and induced apoptosis in breast cancer cells (22), prevented human oophoroma cell invasion and metastasis (28), and induced neuroblastoma SH-SY5Y cell death by activating the PI3K/Akt pathway (29).

In the present study, we conducted an investigation of the effects of puerarin on NSCLC NCI-H441 cells. Puerarin inhibited cell growth in a dose and time-dependent manner, and promoted apoptosis as determined by Annexin V/PI staining. In addition, puerarin treatment increased the active form of caspase-3 (cleaved caspase-3), with an increase in Bax expression and a decrease in Bcl-2 levels. The Bcl-2 family of proteins plays an important role in the regulation of apoptosis in many cellular systems, by either inhibiting (Bcl-2, Bcl-XL, Bcl-W, Bfl-1, and Mcl-1) or promoting apoptosis (Bax, Bak, Bad, Bcl-Xs, Bid, and Hrk) (30). Heterodimerization between pro- and anti-apoptotic members of this family and relative levels of both types of proteins may determine the susceptibility to a given apoptotic stimulus and cell fate (31,32).

Moreover, a high concentration of puerarin induced NCI-H441 cell autophagy as assessed by MDC staining, and caused a slight increase in Atg5 expression and reduction in the LC3-II protein level. Notably, there was no detectable alteration of LC3-II expression compared with the control. During autophagy, the nascent proMAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) is processed post-translationally into the cytoplasmic soluble form LC3-I and by conjugation to phosphatidylethanolamine (PE), generating the membrane-associated protein 1 light chain 3 (33). For this reason, LC3 is a commonly-used autophagic marker (34). We failed to detect a change in LC3-II expression, perhaps because the samples used for this experiment were in the early stage of autophagy. To confirm our hypothesis, we analyzed the phosphorylation levels of Akt and ERK, since it is known that PI3K/Akt and ERK pathway inactivation is required during cell autophagy. Indeed, the phosphorylation levels of Akt and ERK were reduced in a dose-dependent manner, further indicating that puerarin treatment induced NCI-H441 cell autophagy. In addition, puerarin prevented tumor growth by inducing tumor cell apoptosis in the xenograft nude mouse model. This result was consistent with *in vitro* data.

Taken together, puerarin, inhibited cell growth, induced apoptosis and autophagy and could be considered as a possible chemotherapeutic drug for the treatment of lung cancer.

Acknowledgements

This study was supported by the Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University) (CMEMR2016-B01).

References

