MicroRNA-485 plays tumour-suppressive roles in colorectal cancer by directly targeting GAB2

JIBIN LI, JIAN XU, XIAOFEI YAN, KEER JIN, WENYA LI and RUI ZHANG

Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China

Received August 23, 2017; Accepted April 25, 2018

DOI: 10.3892/or.2018.6449

Abstract. Colorectal cancer (CRC) is reported to be the third most common cancer and the fourth leading cause of cancer-related deaths around the world. MicroRNA-485 (miR-485) has been reported to be aberrantly expressed and play important roles in several types of human malignancy. However, the expression level, biological functions and underlying molecular mechanisms of miR-485 in CRC remain unclear. Therefore, the aim of the present study was to determine miR-485 expression levels and their clinical significance in CRC and to explore the functions and underlying mechanisms of miR-485 in this disease. In the present study, miR-485 was lowly expressed in CRC tissues and cell lines. Decreased miR-485 expression was associated with tumour size, lymph node metastasis, distant metastasis and TNM stage. Functional assays indicated that upregulation of miR-485 impaired CRC cell proliferation, invasion and induced cell apoptosis. Grb2-associated binding 2 (GAB2) was identified as a direct target of miR-485 in CRC. GAB2 was upregulated in CRC tissues and was negatively correlated with the miR-485 expression level. Furthermore, GAB2 knockdown simulated the tumour-suppressing roles of miR-485 overexpression in CRC cells. Moreover, restored GAB2 expression reversed the effects of miR-485 overexpression in CRC cells. In addition, miR-485 suppressed the AKT and ERK signalling pathways in CRC by directly targeting GAB2. Collectively, these findings demonstrate that miR-485 may play tumour suppressive roles in CRC by directly targeting GAB2 and indirectly regulating AKT and ERK signalling pathways, suggesting that miR-485 may be a potential therapeutic target for patients with this disease.

Introduction

Colorectal cancer (CRC) is reported to be the third most common cancer and the fourth leading cause of cancer-related deaths around the world (1). It is estimated that there are approximately 1.2 million new cases and 600,000 deaths due to CRC every year worldwide (2). Several risk factors involved in CRC carcinogenesis and progression have been identified thus far, including genetic instability, hereditary components, increased age, male sex, increased intake of fat, alcohol or red meat, obesity, smoking and a lack of physical exercise (3-5). At present, the main therapeutic methods used to treat CRC include surgery, followed by adjuvant chemotherapy (6). Despite numerous advances over the past decades, prognosis of CRC patients remains unsatisfactory, with an average survival of <30 months (7,8). Local recurrence and distant metastasis are the primary causes of the unfavourable prognosis of CRC (9). Therefore, a better understanding of the mechanisms associated with CRC occurrence and development will provide diagnostic and prognostic markers and novel therapeutic methods for patients with this malignancy.

MicroRNAs (miRNAs) are a large subset of short, single-strand and endogenous non-coding RNA molecules with a length of 18-22 nucleotides (10). miRNAs negatively modulate gene expression through recognizing and direct specific interaction with the complementary target sites in the 3′-untranslated regions (3′-UTRs) of their target genes, thus causing mRNA degradation and/or translational inhibition (11). Bioinformatic analysis has predicted that miRNAs may regulate over 30% of protein-coding genes (12); therefore, miRNAs play key roles in a large number of physiological and pathological processes, such as cell proliferation, cycle, apoptosis, metabolism, differentiation, motility, epithelial-mesenchymal transition and metastasis (13-15). An increasing body of evidence indicates that aberrantly expressed miRNAs are observed in almost all types of human cancer, such as CRC (16), gastric carcinoma (17), lung cancer (18) and cervical carcinoma (19). Certain miRNAs may act as oncogenes or tumour-suppressor genes which primarily depends on the roles of their target genes (20-22). Therefore, miRNAs may be developed as therapeutic targets for antitumour therapy.

miR-485, which is mapped to the 14q32.31 region, is aberrantly expressed and plays an important role in multiple types of human malignancy (23-26). However, the expression
level, biological functions and underlying molecular mechanisms of miR-485 in CRC remain unclear. Therefore, the aim of this study was to determine the miR-485 levels and their clinical significance in CRC and explore the roles and underlying mechanisms of miR-485 in this disease. In addition, Grb2-associated binding 2 (GAB2) was identified as a direct target of miR-485 in CRC.

Materials and methods

Clinical tissue samples. This study was approved by the Ethics Committee of the Cancer Hospital of China Medical University. Written informed consent was provided by all patients enrolled in this study. A total of 58 paired CRC tissues and their corresponding adjacent normal tissues were obtained from CRC patients undergoing surgical resection at the Department of Colorectal Surgery, Cancer Hospital of China Medical University, between September 2013 and June 2016. None of these patients were treated with chemotherapy or radiation therapy before surgery. All tissue samples were immediately frozen in liquid nitrogen and then were stored at -80°C.

Cell lines and culture conditions. Five human CRC cell lines, HCT116, SW480, SW620, CaCo-2 and LoVo, were acquired from the Type Culture Collection of Chinese Academy of Sciences (Shanghai, China). The normal human colon epithelial cell line FHC was obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA). All cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal bovine serum (FBS), 100 U/ml penicillin and 100 mg/ml streptomycin (all were from Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) in a humidified atmosphere of 5% CO₂ and 95% air at 37°C.

Oligonucleotide and plasmid transfection. miR-485 mimics, miRNA mimic negative control (miR-NC), GAB2 small interfering RNA (GAB2 siRNA) and negative control siRNA (NC siRNA) were obtained from Guangzhou RiboBio Co., Ltd. (Guangzhou, China). The sequence of the miR-485 mimic was 5'-UUCUCCGAACGUGUCACGU-3'; and the NC siRNA sequence was 5'-GATGCAAAUUCUGUGUACUGUU-3'. The sequence of the miR-NC mimic was 5'-UUCUCCGAACGUGUCACGU-3'. Twenty-four-well Transwell cell culture chambers (Corning Costar, Cambridge, MA, USA) were applied to synthesize cDNA. cDNA was subjected to quantitative PCR using the SYBR Premix Ex Taq™ kit (Takara Bio). The relative GAB2 mRNA level was normalized to that of GAPDH. The primers were designed as follows: miR-485, 5’-CCAAGCTTCCACCCTTCTCCTTGTTTACGAC-3’ (forward) and 5’-CCGGATCCCTGCGGAGTTTAACTTTA-3’ (reverse); U6, 5’-CGCCTCGAGCCAGATATAC-3’ (forward) and 5’-GAGAGTCCTTCCTGCGGAGTTTAACTTTA-3’ (reverse); and GAPDH, 5’-CCCCCTTCAATGGCTCTCAA-3’ (forward) and 5’-ATGAGTCTTCTTCTGCGGAGTTTAACTTTA-3’ (reverse). Relative expression was analysed by using the 2^-ΔΔCt method (27).

Materials and methods. Thermo Fisher Scientific, Inc., Cambridge, MA, USA) was used to detect miR-485 expression and U6 snRNA was used as an internal control. To quantify GAB2 mRNA expression, PrimeScript RT Reagent kit (Takara Bio, Co., Ltd., Dalian, China) was applied to synthesize cDNA. cDNA was subjected to quantitative PCR using the SYBR Premix Ex Taq™ kit (Takara Bio). The relative GAB2 mRNA level was normalized to that of GAPDH. The primers were designed as follows: miR-485, 5’-CCAAGCTTCCACCCTTCTCCTTGTTTACGAC-3’ (forward) and 5’-CCGGATCCCTGCGGAGTTTAACTTTA-3’ (reverse); U6, 5’-CGCCTCGAGCCAGATATAC-3’ (forward) and 5’-GAGAGTCCTTCCTGCGGAGTTTAACTTTA-3’ (reverse); and GAPDH, 5’-CCCCCTTCAATGGCTCTCAA-3’ (forward) and 5’-ATGAGTCTTCTTCTGCGGAGTTTAACTTTA-3’ (reverse). Relative expression was analysed by using the 2^-ΔΔCt method (27).

Flow cytometric analysis for cell apoptosis. Cell apoptosis was detected using the Annexin V-FITC/PI apoptosis kit (Abcam, Cambridge, UK). Transfected cells were digested with trypsin-ethylenediaminetetraacetic acid (EDTA) and washed with ice-cold PBS. Afterwards, the cells were re-suspended in 300 µl of 1X binding buffer containing 5 µl of FITC-Annexin V and 5 µl of propidium iodide (PI).
Following a 30-min incubation at room temperature in the dark, the apoptosis rate was analysed using a flow cytometry kit (BD Biosciences, Franklin Lakes, NJ, USA).

Bioinformatic analysis. Bioinformatic analysis was carried out to predict the potential targets of miR-485 using two online prediction programs: TargetScan (www.targetscan.org) and microRNA.org (http://www.microrna.org/microrna/home.do). miR-485 was predicted to bind to target sites 282-288 of the 3′-UTR of GAB2.

Luciferase reporter assay. Luciferase reporter plasmid containing the wild-type miR-485 putative binding site and the mutant site in the 3′-UTR of GAB2 (pMIR-GAB2-3′-UTR Wt and pMIR-GAB2-3′-UTR Mut) were designed and produced by Shanghai GenePharma. Cells were seeded in 24-well plates at a density of 1.5x10^5 cells/well and incubated at 37°C in a 5% CO₂ for 24 h prior to transfection. miR-485 mimics or miR-NC and pMIR-GAB2-3′-UTR Wt or pMIR-GAB2-3′-UTR Mut were transfected into the cells using Lipofectamine 2000 according to the manufacturer's instructions. After 48 h of incubation, luciferase activities were detected using the Dual-Luciferase reporter assay.

Western blot analysis. Total tissues from tissues or cells were isolated using a radioimmunoprecipitation assay lysis buffer containing 0.1 mg/ml phenylmethylsulfonyl fluoride, 1 mM sodium orthovanadate and 1 mg/ml aprotinin (all from Sigma-Aldrich; Merck KGaA). The protein concentration was determined using the Pierce BCA Protein Assay kit (Thermo Fisher Scientific). Equine tissues were separated by 10% SDS-PAGE and transferred onto PVDF membranes (Millipore, Billerica, MA, USA). After blocking in 5% non-fat milk in Tris-buffered saline with Tween (TBST) at room temperature for 1 h, the membranes were incubated at 4°C overnight primary antibodies against the following proteins: GAB2 (1:1,000 dilution; cat. no. sc-365590), phosphorylated AKT (p-AKT; 1:1,000 dilution; cat. no. sc-81433), AKT (1:1,000 dilution; cat. no. sc-81434), phosphorylated ERK (p-ERK; 1:1,000 dilution; cat. no. sc-81492), ERK (1:1,000 dilution; cat. no. sc-514302) and GAPDH (1:1,000 dilution; cat. no. sc-47724; all from Santa Cruz Biotechnology, CA, USA). After washing with TBST three times, the membranes were probed with goat anti-mouse horseradish peroxidase-conjugated secondary antibody (1:5,000 dilution; cat. no. sc-2005; Santa Cruz Biotechnology) at room temperature for 1 h. Finally, the protein bands were visualized using an enhanced chemiluminescence reagent (Pierce Biotechnology, Inc., Rockford, IL, USA). Band intensity was analysed using ImageJ 1.49 software (National Institutes of Health, Bethesda, MD). GAPDH was used as a loading control.

Statistical analysis. Data are expressed as the mean ± standard deviation (SD), and analysed with the Student’s t-test or the one-way analysis of variance (ANOVA) using SPSS software (version 11.0; SPSS, Inc., Chicago, IL, USA). Student-Newman-Keuls test was used as a post hoc test following ANOVA. The correlation between the miR-485 expression and the clinicopathological factors of CRC patients was analysed by the Table I. Correlation between miR-485 expression and clinicopathological characteristics of the patients with CRC.

<table>
<thead>
<tr>
<th>Clinicopathological characteristics</th>
<th>No. of cases</th>
<th>miR-485 expression</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low (n)</td>
<td>High (n)</td>
<td>P-value</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>31</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>Female</td>
<td>27</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><60</td>
<td>37</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>≥60</td>
<td>21</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Tumour size (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><5</td>
<td>28</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>≥5</td>
<td>30</td>
<td>19</td>
<td>11</td>
</tr>
<tr>
<td>Differentiation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well and moderate</td>
<td>27</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Poor</td>
<td>31</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Lymph node metastasis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absence</td>
<td>32</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>Present</td>
<td>26</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>Distant metastasis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absence</td>
<td>33</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>Present</td>
<td>25</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>TNM stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-II</td>
<td>28</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>III-IV</td>
<td>30</td>
<td>21</td>
<td>9</td>
</tr>
</tbody>
</table>

*Statistically significant difference. CRC, colorectal cancer; miR-485, microRNA-485; TNM, tumor-node-metastasis.

Results

miR-485 is frequently downregulated in CRC tissues and cell lines. To investigate whether miR-485 was aberrantly expressed in CRC tissues, we measured its expression in 58 paired CRC tissues and their corresponding adjacent normal tissues. The data of RT-qPCR revealed that the expression level of miR-485 was obviously lower in CRC tissues than that noted in the adjacent normal tissues (Fig. 1A, P<0.05). To clarify the clinical value of miR-485 in CRC, all patients were divided into either the miR-485 low-expression group (n=29) or the miR-485 high-expression group (n=29). As shown in Table I, decreased miR-485 expression was associated with tumour size (P=0.036), lymph node metastasis (P=0.035), distant metastasis (P=0.006) and TNM stage (P=0.002). However, no association was observed between the miR-485 expression and the clinical value of miR-485 in CRC.
expression and other clinicopathological characteristics, such as sex (P=0.430), age (P=0.412) and differentiation (P=0.792).

In addition, miR-485 expression in five CRC cell lines (HCT116, SW480, SW620, CaCo-2 and LoVo) and the normal human colon epithelium cell line FHC were examined. The RT-qPCR analysis data indicated that miR-485 was lowly expressed in all CRC cell lines compared with that in the FHC cell line (Fig. 1B, P<0.05). HCT116 and SW480 cells, which demonstrated lower expression levels of miR-485 in the five CRC cell lines, were selected for further experiments. These results suggest that miR-485 is downregulated in CRC and may be developed as a possible prognostic biomarker for patients with CRC.

miR-485 reduces proliferation, invasion and induces apoptosis of CRC. To determine the biological functions of miR-485 in CRC, HCT116 and SW480 cells were transfected with miR-485 mimics to increase miR-485 expression. After a 48-h transfection, RT-qPCR analysis confirmed that miR-485 expression was markedly upregulated in the HCT116 and SW480 cells following miR-485 mimic transfection (Fig. 2A, P<0.05). MTT and cell invasion assays were conducted to explore the effects of miR-485 overexpression on CRC cell proliferation and invasion, respectively. As shown in Fig. 2B and C, restoration of miR-485 expression suppressed the proliferation and invasion abilities of the HCT116 and SW480 cells (P<0.05). In addition, we performed flow cytometric analysis to investigate whether miR-485 affects CRC cell apoptosis. We revealed that ectopic expression of miR-485 promoted apoptosis in the HCT116 and SW480 cells (Fig. 2D, P<0.05). Collectively, miR-485 may play tumour-suppressive roles in CRC occurrence and development.

GAB2 is a direct target gene of miR-485 in CRC. In order to explore the mechanisms associated with the tumour-suppressing roles of miR-485 in CRC, bioinformatic analyses were utilized to predict the potential targets of miR-485. GAB2, which has previously been shown to be upregulated in CRC and involved in CRC occurrence and development (28-30), was predicted as a major target of miR-485 (Fig. 3A) and selected for further confirmation. To validate this, luciferase reporter assays were adopted to determine whether miR-485 could directly target the 3′-UTR of GAB2. As shown in Fig. 3B, the ectopic expression of miR-485 obviously reduced the luciferase activities of pMIR-GAB2-3′-UTR Wt (Fig. 3B, P<0.05); however, this ectopic expression did not suppress the activities of the pMIR-GAB2-3′-UTR Mut in HCT116 and SW480 cells. To confirm the regulatory effects of miR-485 on GAB2, RT-qPCR and western blot analysis were utilized to detect the GAB2 mRNA and protein expression in HCT116 and SW480 cells that were transfected with miR-485 mimics or miR-NC. Our data revealed that upregulation of miR-485 reduced the GAB2 expression at both the mRNA (Fig. 3C, P<0.05) and protein (Fig. 3D, P<0.05) levels in HCT116 and SW480 cells. Taken together, GAB2 is a novel direct target of miR-485 in CRC.

GAB2 is upregulated in CRC tissues and negatively correlated with miR-485 expression. To further elucidate the association between miR-485 and GAB2, we measured the GAB2 expression in CRC tissues and their corresponding adjacent normal tissues. The expression levels of GAB2 mRNA (Fig. 4A, P<0.05) and protein (Fig. 4B) were obviously increased in CRC tissues compared with those in adjacent normal tissues. A negative association between miR-485 and GAB2 mRNA expression was observed in CRC tissues according to Spearman's correlation analysis (Fig. 4C; r=-0.6004, P<0.0001). These results suggest that the upregulation of GAB2 in CRC may be partly attributed to the downregulation of miR-485.

GAB2 downregulation simulates the tumour-suppressor function of miR-485 overexpression in CRC cells. As GAB2 was identified as a direct target of miR-485 in CRC, we next examined the biological roles of GAB2 in CRC cells. GAB2 siRNA was transfected into HCT116 and SW480 cells to knock down GAB2. Western blot analysis was carried out to determine the transfection efficiency. The results revealed that GAB2 expression was effectively silenced in GAB2 siRNA-transfected HCT116 and SW480 cells compared with that in cells transfected with NC siRNA (Fig. 5A).
Subsequently, MTT assays, cell invasion assays and flow cytometric analysis were performed. As presented in Fig. 5B-D, GAB2 knockdown inhibited proliferation (P<0.05), invasion (P<0.05) and induced apoptosis in the HCT116 and SW480 cells, which was similar with those effects induced by miR-485 overexpression. These findings further demonstrate that GAB2 is a functional downstream target of miR-485 in CRC.

Restoration of GAB2 expression partly reverses the effects of miR-485 overexpression in CRC cells. To further evaluate
Li et al.: miR-485 in CRC

Figure 3. GAB2 is a direct target of miR-485 in CRC. (A) miR-485 and its putative binding sites at the 3'-UTR of wild-type (Wt) GAB2 and the 3'-UTR of mutant (Mut) GAB2 were generated as indicated. (B) HCT116 and SW480 cells were co-transfected with miR-485 mimics or miR-NC and pMIR-GAB2-3'-UTR Wt or pMIR-GAB2-3'-UTR Mut. After 48 h incubation, a Dual-Luciferase reporter system was utilized to determine the luciferase activities in indicated cells. *P<0.05 vs. miR-NC. (C) Analysis of GAB2 mRNA expression levels in HCT116 and SW480 cells following transfection with miR-485 mimics or miR-NC by RT-qPCR. *P<0.05 vs. miR-NC. (D) Western blot analysis was performed to examine the effects of miR-485 on GAB2 protein expression in HCT116 and SW480 cells. *P<0.05 vs. miR-NC. CRC, colorectal cancer; GAB2, Grb2-associated binding 2.

Figure 4. Expression levels of miR-485 were negatively correlated with GAB2 levels in CRC tissue. (A) GAB2 mRNA and (B) protein expression levels in CRC tissues and their corresponding adjacent normal tissues were determined by RT-qPCR and western blot analysis, respectively. *P<0.05 vs. adjacent normal tissues. (C) Spearman's correlation analysis indicated an inverse relationship between miR-485 and GAB2 mRNA expression levels in CRC tissues. r=-0.6004, P<0.0001. CRC, colorectal cancer; GAB2, Grb2-associated binding 2.
whether GAB2 is responsible for the tumour-suppressive roles of miR-485 in CRC, we carried out a rescue experiment involving HCT116 and SW480 cells cotransfected with miR-485 mimics and pcDNA3.1 or the GAB2-overexpression plasmid pcDNA3.1-GAB2. Western blot analysis demonstrated that reduced GAB2 protein expression caused by the miR-485
mimics was rescued by transfection with pcDNA3.1-GAB2 in the HCT116 and SW480 cells (Fig. 6A, P<0.05). Functional experiments indicated that upregulation of GAB2 restored cell proliferation (Fig. 6B, P<0.05) and invasion (Fig. 6C, P<0.05) and reduced the apoptosis rate (Fig. 6D, P<0.05) in HCT116 and SW480 cells, which were previously regulated by the
miR-485 mimics. These findings further verify that miR-485 exerts tumour-suppressive roles in CRC, at least in part, by downregulating GAB2.

miR-485 suppresses AKT and ERK pathways by targeting GAB2 expression. GAB2 was previously reported to play essential roles in regulating AKT and ERK pathways (31-33). To determine whether miR-485 regulates the AKT and ERK signalling pathways by targeting GAB2 in CRC, we measured p-AKT, AKT, p-ERK and ERK expression in HCT116 and SW480 cells after transfection with miR-NC, miR-485 mimics+pcDNA3.1 or miR-485 mimics+pcDNA3.1-GAB2. As shown in Fig. 7A and B, enforced expression of miR-485 significantly decreased the expression of p-AKT and p-ERK without changing the total levels of AKT or ERK in HCT116 and SW480 cells (P<0.05). However, the expression levels of p-AKT and p-ERK were recovered in the miR-485 mimic-transfected HCT116 and SW480 cells cotransfected with pcDNA3.1-GAB2. Taken together, the miR-485/GAB2 network regulates the AKT and ERK signalling pathways in CRC.

Discussion

It is well established that the dysregulation of miRNAs is closely related to tumourigenesis and tumour development in various types of human cancers, including CRC (34,35). Moreover, miRNAs have been indicated to be potential sensitive and accurate biomarkers for diagnosing cancer and treating tumour patients (14,36). Therefore, a comprehensive understanding of the biological functions of miRNAs in CRC might be beneficial to the identification of new biomarkers for the early diagnosis and treatment of CRC, thus improving the prognosis of patients with this disease. In the present study, we found that the expression of miR-485 was obviously downregulated in CRC tissues and cell lines. A low expression level of miR-485 was correlated with tumour size, lymph node metastasis, distant metastasis and TNM stage. Upregulation of miR-485 inhibited cell proliferation, invasion and increased the apoptosis of CRC cells. Furthermore, we demonstrated that GAB2 is a direct target of miR-485 in CRC. Moreover, miR-485 suppressed the activation of AKT and ERK signalling pathways in CRC by targeting GAB2. Therefore, our data indicate that miR-485 may be developed as a novel potential therapeutic target for monitoring and treating CRC.

miR-485 has been observed to be abnormally expressed in multiple types of human cancer. For example, the expression levels of miR-485 were decreased in lung adenocarcinoma tissues and cell lines. Decreased miR-485 expression was associated with tumour metastasis in patients with lung adenocarcinoma (37). miR-485 was identified to be downregulated in gastric cancer and positively correlated with tumour size, invasion depth, lymph node metastasis and TNM stage. Survival analyses indicated a clear positive correlation between miR-485 expression levels and survival time in gastric cancer patients. Multivariate analyses identified low miR-485 expression levels as an independent predictor of poor prognosis in gastric cancer patients (38). The expression level of miR-485 was lower in hepatocellular carcinoma tissues and was significantly correlated with tumour size, tumour number, TNM stage and metastasis (39,40). In prostate cancer, miR-485 was significantly downregulated in tumour tissues. Lower miR-485 levels were correlated with a high incidence of metastatic events and high prostate-specific antigen (PSA) levels; similar trends were observed for lymph node invasion and Gleason score (41). The downregulation of miR-485 was also observed in ovarian (23), bladder (24), breast (25,26), melanoma (42) and oral tongue squamous cell carcinoma (43). These findings suggest that miR-485 may serve as a diagnostic and prognostic biomarker for these specific tumour types.

Numerous studies have provided sufficient evidence to demonstrate that miR-485 is important in tumourigenesis and tumour development. For instance, Mou and Liu (37) demonstrated that miR-485 overexpression suppressed metastasis and epithelial-mesenchymal transition in lung adenocarcinoma. Kang et al (44) revealed that resumption of expression of miR-485 inhibited cell metastasis and sphere formation in gastric cancer. Guo et al (39) reported that restoring miR-485 expression attenuated hepatocellular carcinoma cell proliferation, invasion and metastasis (40). Chen et al (24) demonstrated that ectopic expression of miR-485 suppressed metastasis and epithelial-mesenchymal transition in bladder cancer. Anaya-Ruiz et al revealed (25) that increased expression of miR-485 reduced cell proliferation, colony formation and metastasis in vitro and reduced spontaneous metastasis in breast cancer cells in vivo (26). A study by Wu et al (42)
indicated that miR-485 played tumour suppressive roles in melanoma by regulating cell proliferation and invasion. Lin et al (43) demonstrated that restoration of miR-485 expression decreased cell motility and epithelial-mesenchymal transition in oral tongue squamous cell carcinoma. These findings indicate that miR-485 should be developed as a novel therapeutic target for antineoplastic agents.

Previously, a number of miR-485 targets have been validated in a number of types of cancer, including Flot2 (37) in lung adenocarcinoma, stanniocalcin 2 (39) and EMMPRIN (40) in hepatocellular carcinoma, HMAG2 (24) in bladder cancer, T47D (25) and PGC-1α (26) in breast cancer and Frizzled7 (42) in melanoma. In this study, GAB2 was identified as a novel direct target of miR-485 in CRC. GAB2, a member of the mammalian Grb2-associated binding (Gab) scaffold/adaptor family, contains an N-terminal PH domain, a tyrosine residue domain and a proline-rich domain (45,46). Previously, GAB2 was found to be upregulated in multiple types of human cancer, such as renal cell carcinoma (31), hepatocellular carcinoma (33), gastric (47), ovarian (48) and breast cancer (49). GAB2 is also overexpressed in CRC tissues, and this overexpression was obviously associated with lymph node metastasis, distant metastasis and TNM stage (29). Kaplan-Meier analyses indicated that CRC patients with a high level of GAB2 had a significantly poorer prognosis compared with that of patients with a low level of GAB2. Multivariate analyses identified GAB2 as an independent prognostic factor for CRC patients (29). Further functional experiments indicated that GAB2 serves as an oncogene in CRC by regulating cell growth, metastasis, epithelial-mesenchymal transition and angiogenesis. These findings indicate that selecting GAB2 as a therapeutic target would be useful for patients with CRC.

In conclusion, this study confirmed that miR-485 may play tumour-suppressive roles in CRC by inhibiting cell growth and invasion and inducing apoptosis via directly targeting GAB2 and indirectly regulating AKT and ERK signalling pathways. The results of the present study provide novel evidence for the potential utility of a miR-485/GAB2-based targeted therapy for the treatment of CRC.

Acknowledgements

Not applicable.

Funding

The present study was supported by the National Natural Science Fund from the National Natural Science Foundation of China (grant no. 81672427).

Availability of data and materials

The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.

Authors’ contributions

RZ and JL designed this research. JX, XY, KJ and WL performed functional experiments. All authors read and approved the manuscript and agree to be accountable for all aspects of the research in ensuring that the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Ethics approval and consent to participate

The present study was approved by the Ethics Committee of the Cancer Hospital of China Medical University. Written informed consent was provided by all patients enrolled in this study.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

41. Formosa A, Markert EK, Lena AM, Italiano D, Finazzi-Agro E, Levine AJ, Bernardini S, Garabadgi AV, Melino G and Candi E: MicroRNAs, miR-154, miR-299-5p, miR-376a, miR-376c, miR-377, miR-381, miR-487b, miR-485-3p, miR-495 and miR-654-3p, mapped to the 14q32.31 locus, regulate proliferation, apoptosis, migration and invasion in metastatic prostate cancer cells. Oncogene 33: 5173-5182, 2014.

