Open Access

Protein microarray technology: Assisting personalized medicine in oncology (Review)

  • Authors:
    • Monica Neagu
    • Marinela Bostan
    • Carolina Constantin
  • View Affiliations

  • Published online on: June 12, 2019     https://doi.org/10.3892/wasj.2019.15
  • Pages: 113-124
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Among proteomics technologies, protein microarray, over the past last years, has gained an increased momentum in the biomarkers discovery domain. The characteristics of protein microarray, namely that it is a high‑throughput tool, it provides a high specificity and only requires a minute amount of biological samples, render it a suitable tool for searching, quantifying and validating biomarkers in various pathologies. Protein microarray is based on the specific antigen‑antibody reaction, such as any enzyme‑linked immunosorbent assay, the specific reaction occurring on a miniaturized support (chip or slide), thus having the advantage of simultaneous evaluation of tens to thousands of molecules in small samples with a highly specific recognition for the detection system. In this review, we highlight the history of protein microarray technologies development and discuss this technology is stepping into the future. We present personalized medicine goals and discuss how protein microarray can aid in these goals, with an emphasis on several oncological diseases. We also discuss how protein technology has been used in diseases, such as lung, breast cancers, as well as in other diseases that, over the past last years, have taken advantage of this proteomic endeavor.

References

1 

Schena M, Shalon D, Davis RW and Brown PO: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 270:467–470. 1995.PubMed/NCBI View Article : Google Scholar

2 

Gygi SP, Rochon Y, Franza BR and Aebersold R: Correlation between protein and mRNA abundance in yeast. Mol Cell Biol. 19:1720–1730. 1999.PubMed/NCBI View Article : Google Scholar

3 

Haab BB: Antibody arrays in cancer research. Mol Cell Proteomics. 4:377–383. 2005.PubMed/NCBI View Article : Google Scholar

4 

Chen CS and Zhu H: Protein microarrays. Biotechniques. 40(423, 425, 427)2006.PubMed/NCBI View Article : Google Scholar

5 

Kopf E and Zharhary D: Antibody arrays-An emerging tool in cancer proteomics. Int J Biochem Cell Biol. 39:1305–1317. 2007.PubMed/NCBI View Article : Google Scholar

6 

Constantin C, Surcel M, Munteanu A and Neagu M: Protein microarray technology for antibody detection associated to human pathology. Roman Arch Microbiol Immunol. 77:236–244. 2018.

7 

Poetz O, Schwenk JM, Kramer S, Stoll D, Templin MF and Joos TO: Protein microarrays: Catching the proteome. Mech Ageing Dev. 126:161–170. 2005.PubMed/NCBI View Article : Google Scholar

8 

Speer R, Wulfkuhle J, Espina V, Aurajo R, Edmiston KH, Liotta LA and Petricoin EF III: Development of reverse phase protein microarrays for clinical applications and patient-tailored therapy. Cancer Genomics Proteomics. 4:157–164. 2007.PubMed/NCBI

9 

Matei C, Tampa M, Ion RM, Georgescu SR, Dumitrascu GR, Constantin C and Neagu M: Protein microarray for complex apoptosis monitoring of dysplastic oral keratinocytes in experimental photodynamic therapy. Biol Res. 47(33)2014.PubMed/NCBI View Article : Google Scholar

10 

Demyanenko SV, Uzdensky AB, Sharifulina SA, Lapteva TO and Polyakova LP: PDT-induced epigenetic changes in the mouse cerebral cortex: A protein microarray study. Biochim Biophys Acta. 1840:262–270. 2014.PubMed/NCBI View Article : Google Scholar

11 

Sutandy FX, Qian J, Chen CS and Zhu H: Overview of protein microarrays. Curr Protoc Protein Sci. 27:Unit 27.1. 2013.PubMed/NCBI View Article : Google Scholar

12 

Wilson JJ, Burgess R, Mao YQ, Luo S, Tang H, Jones VS, Weisheng B, Huang RY, Chen X and Huang RP: Antibody arrays in biomarker discovery. Adv Clin Chem. 69:255–324. 2015.PubMed/NCBI View Article : Google Scholar

13 

Díez P, Dasilva N, González-González M, Matarraz S, Casado-Vela J, Orfao A and Fuentes M: Data analysis strategies for protein microarrays. Microarrays (Basel). 1:64–83. 2012.PubMed/NCBI View Article : Google Scholar

14 

Angenendt P, Kreutzberger J, Glökler J and Hoheisel JD: Generation of high density protein microarrays by cell-free in situ expression of unpurified PCR products. Mol Cell Proteomics. 5:1658–1666. 2006.PubMed/NCBI View Article : Google Scholar

15 

Schweitzer B, Predki P and Snyder M: Microarrays to characterize protein interactions on a whole-proteome scale. Proteomics. 3:2190–2199. 2003.PubMed/NCBI View Article : Google Scholar

16 

Alhamdani MS, Schröder C and Hoheisel JD: Oncoproteomic profiling with antibody microarrays. Genome Med. 1(68)2009.PubMed/NCBI View Article : Google Scholar

17 

Wulfkuhle JD, Aquino JA, Calvert VS, Fishman DA, Coukos G, Liotta LA and Petricoin EF III: Signal pathway profiling of ovarian cancer from human tissue specimens using reverse-phase protein microarrays. Proteomics. 3:2085–2090. 2003.PubMed/NCBI View Article : Google Scholar

18 

Yuk CS, Lee HK, Kim HT, Choi YK, Lee BC, Chun BH and Chung N: Development and evaluation of a protein microarray chip for diagnosis of hepatitis C virus. Biotechnol Lett. 26:1563–1568. 2004.PubMed/NCBI View Article : Google Scholar

19 

Gowan SM, Hardcastle A, Hallsworth AE, Valenti MR, Hunter LJ, de Haven Brandon AK, Garrett MD, Raynaud F, Workman P, Aherne W and Eccles SA: Application of meso scale technology for the measurement of phosphoproteins in human tumour xenografts. Assay Drug Dev Technol. 5:391–401. 2007.PubMed/NCBI View Article : Google Scholar

20 

Sigalotti L, Covre A, Fratta E, Parisi G, Colizzi F, Rizzo A, Danielli R, Nicolay HJ, Coral S and Maio M: Epigenetics of human cutaneous melanoma: Setting the stage for new therapeutic strategies. J Transl Med. 8(56)2010.PubMed/NCBI View Article : Google Scholar

21 

Honda K, Ono M, Shitashige M, Masuda M, Kamita M, Miura N and Yamada T: Proteomic approaches to the discovery of cancer biomarkers for early detection and personalized medicine. Jpn J Clin Oncol. 43:103–109. 2013.PubMed/NCBI View Article : Google Scholar

22 

Yang L, Guo S, Li Y, Zhou S and Tao S: Protein microarrays for systems biology. Acta Biochim Biophys Sin (Shanghai). 43:161–71. 2011.PubMed/NCBI View Article : Google Scholar

23 

LaBaer J and Ramachandran N: Protein microarrays as tools for functional proteomics. Curr Opin Chem Biol. 9:14–19. 2005.PubMed/NCBI View Article : Google Scholar

24 

Hu S, Xie Z, Qian J, Blackshaw S and Zhu H: Functional protein microarray technology. Wiley Interdiscip Rev Syst Biol Med. 3:255–268. 2011.PubMed/NCBI View Article : Google Scholar

25 

He M, Stoevesandt O and Taussig MJ: In situ synthesis of protein arrays. Curr Opin Biotechnol. 19:4–9. 2008.PubMed/NCBI View Article : Google Scholar

26 

Tao SC and Zhu H: Protein chip fabrication by capture of nascent polypeptides. Nat Biotechnol. 24:1253–1254. 2006.PubMed/NCBI View Article : Google Scholar

27 

Miersch S and LaBaer J: Nucleic acid programmable protein arrays: Versatile tools for array-based functional protein studies. Curr Protoc Protein Sci Chapter. 27:Unit27.2. 2011.PubMed/NCBI View Article : Google Scholar

28 

Wright C, Sibani S, Trudgian D, Fischer R, Kessler B, LaBaer J and Bowness P: Detection of multiple autoantibodies in patients with ankylosing spondylitis using nucleic acid programmable protein arrays. Mol Cell Proteomics. 11:M9 00384. 2012.PubMed/NCBI View Article : Google Scholar

29 

Neagu M and Constantin C: Immunogenicity of Stem Cell in Tumorigenesis Versus Regeneration. In: Stem Cells between Regeneration and Tumorigenesis. Tanase C and Neagu M (eds). Bentham Pbl. House. pp202–234. 2016. View Article : Google Scholar

30 

Chiodoni C, Di Martino MT, Zazzeroni F, Caraglia M, Donadelli M, Meschini S, Leonetti C and Scotlandi K: Cell communication and signalling: How to turn bad language into positive one. J Exp Clin Cancer Res. 38(128)2019.PubMed/NCBI View Article : Google Scholar

31 

James P: Protein identification in the post-genome era: The rapid rise of proteomics. Q Rev Biophys. 30:279–331. 1997.PubMed/NCBI

32 

Joos T and Bachmann J: Protein microarrays: Potentials and limitations. Front Biosci (Landmark Ed). 14:4376–4385. 2009.PubMed/NCBI

33 

Ramachandran N, Raphael JV, Hainsworth E, Demirkan G, Fuentes MG, Rolfs A, Hu Y and LaBaer J: Next-generation high-density self-assembling functional protein arrays. Nat Methods. 5:535–538. 2008.PubMed/NCBI View Article : Google Scholar

34 

Manzano-Romána R and Fuentes M: A decade of nucleic acid programmable protein arrays (NAPPA) availability: News, actors, progress, prospects and access. J Proteomics. 198:27–35. 2019.PubMed/NCBI View Article : Google Scholar

35 

Rivera R, Wang J, Yu X, Demirkan G, Hopper M, Bian X, Tahsin T, Magee DM, Qiu J, LaBaer J and Wallstrom G: Automatic identification and quantification of extra-well fluorescence in microarray images. J Proteome Res. 16:3969–3977. 2017.PubMed/NCBI View Article : Google Scholar

36 

Yu X, Petritis B, Duan H, Xu D and LaBaer J: Advances in cell-free protein array methods. Expert Rev Proteomics. 15:1–11. 2018.PubMed/NCBI View Article : Google Scholar

37 

Yu X, Song L, Petritis B, Bian X, Wang H, Viloria J, Park J, Bui H, Li H, Wang J, et al: Multiplexed nucleic acid programmable protein arrays. Theranostics. 7:4057–4070. 2017.PubMed/NCBI View Article : Google Scholar

38 

Bulman A, Neagu M and Constantin C: Immunomics in skin cancer-improvement in diagnosis, prognosis and therapy monitoring. Curr Proteomics. 10:202–217. 2013.PubMed/NCBI View Article : Google Scholar

39 

Neagu M and Constantin C: New Insights in Cutaneous Melanoma Immune-Therapy-Tackling Immune-Suppression and Specific Anti-Tumoral Response. In: Melanoma. Murph M (ed). IntechOpen. pp225–246. 2015. View Article : Google Scholar

40 

Butterfield LH, Ribas A, Dissette VB, Amarnani SN, Vu HT, Oseguera D, Wang HJ, Elashoff RM, McBride WH, Mukherji B, et al: Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma. Clin Cancer Res. 9:998–1008. 2003.PubMed/NCBI

41 

Yuan J, Wang E and Fox BA: Immune monitoring technology primer: Protein microarray (‘seromics’). J Immunother Cancer. 4(2)2016.PubMed/NCBI View Article : Google Scholar

42 

Chen YT, Scanlan MJ, Sahin U, Türeci O, Gure AO, Tsang S, Williamson B, Stockert E, Pfreundschuh M and Old LJ: A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA. 94:1914–1918. 1997.PubMed/NCBI View Article : Google Scholar

43 

Fulton KM and Twine SM: Immunoproteomics: Current technology and applications. Methods Mol Biol. 1061:21–57. 2013.PubMed/NCBI View Article : Google Scholar

44 

Sahin U, Tureci O, Schmitt H, Cochlovius B, Johannes T, Schmits R, Stenner F, Luo G, Schobert I and Pfreundschuh M: Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci USA. 92:11810–11813. 1995.PubMed/NCBI View Article : Google Scholar

45 

Ladd JJ, Chao T, Johnson MM, Qiu J, Chin A, Israel R, Pitteri SJ, Mao J, Wu M, Amon LM, et al: Autoantibody signatures involving glycolysis and splicesome proteins precede a diagnosis of breast cancer among postmenopausal women. Cancer Res. 73:1502–1513. 2013.PubMed/NCBI View Article : Google Scholar

46 

Madoz-Gurpide J, Kuick R, Wang H, Misek DE and Hanash SM: Integral protein microarrays for the identification of lung cancer antigens in sera that induce a humoral immune response. Mol Cell Proteomics. 7:268–281. 2008.PubMed/NCBI View Article : Google Scholar

47 

Bouwman K, Qiu J, Zhou H, Schotanus M, Mangold LA, Vogt R, Erlandson E, Trenkle J, Partin AW, Misek D, et al: Microarrays of tumour cell derived proteins uncover a distinct pattern of prostate cancer serum immunoreactivity. Proteomics. 3:2200–2207. 2003. View Article : Google Scholar

48 

GuhaThakurta D, Sheikh NA, Fan LQ, Kandadi H, Meagher T, Hall SJ, Kantoff PW, Higano CS, Small EJ, Gardner TA, et al: Humoral immune response against nontargeted tumour antigens after treatment with sipuleucel-T and its association with improved clinical outcome. Clin Cancer Res. 21:3619–3630. 2015.PubMed/NCBI View Article : Google Scholar

49 

Kwek SS, Dao V, Roy R, Hou Y, Alajajian D, Simko JP, Small EJ and Fong L: Diversity of antigen-specific responses induced in vivo with CTLA-4 blockade in prostate cancer patients. J Immunol. 189:3759–3766. 2012.PubMed/NCBI View Article : Google Scholar

50 

Graff JN, Puri S, Bifulco CB, Fox BA and Beer TM: Sustained complete response to CTLA-4 blockade in a patient with metastatic, castration-resistant prostate cancer. Cancer Immunol Res. 2:399–403. 2014.PubMed/NCBI View Article : Google Scholar

51 

Gnjatic S, Ritter E, Büchler MW, Giese NA, Brors B, Frei C, Murray A, Halama N, Zörnig I, Chen YT, et al: Seromic profiling of ovarian and pancreatic cancer. Proc Natl Acad Sci USA. 107:5088–5093. 2010.PubMed/NCBI View Article : Google Scholar

52 

Abel L, Kutschki S, Turewicz M, Eisenacher M, Stoutjesdijk J, Meyer HE, Woitalla D and May C: Autoimmune profiling with protein microarrays in clinical applications. Biomed Biochim Acta. 1844:977–987. 2014.PubMed/NCBI View Article : Google Scholar

53 

Turewicz M, May C, Ahrens M, Woitalla D, Gold R, Casjens S, Pesch B, BrüningT Meyer HE, Nordhoff E, et al: Improving the default data analysis workflow for large autoimmune biomarker discovery studies with ProtoArrays. Proteomics. 13:2083–2087. 2013.PubMed/NCBI View Article : Google Scholar

54 

Zhang DY, Ye F, Gao L, Liu X, Zhao X, Che Y, Wang H, Wang L, Wu J, Song D, et al: Proteomics, pathway array and signaling network-based medicine in cancer. Cell Div. 4(20)2009.PubMed/NCBI View Article : Google Scholar

55 

Schumacher S, Muekusch S and Seitz H: Up-to-date applications of microarrays and their way to commercialization. Microarrays (Basel). 4:196–213. 2015.PubMed/NCBI View Article : Google Scholar

56 

Ayoglu B, Schwenk JM and Nilsson P: Antigen arrays for profiling autoantibody repertoires. Bioanalysis. 8:1105–1126. 2016.PubMed/NCBI View Article : Google Scholar

57 

Stoevesandt O, Taussig MJ and He M: Protein microarrays: High-throughput tools for proteomics. Expert Rev Proteomics. 6:145–157. 2009.PubMed/NCBI View Article : Google Scholar

58 

No authors listed. The call of the human proteome. Nat Methods. 7(661)2010.PubMed/NCBI

59 

Legrain P, Aebersold R, Archakov A, Bairoch A, Bala K, Beretta L, Bergeron J, Borchers CH, Corthals GL, Costello CE, et al: The human proteome project: Current state and future direction. Mol Cell Proteomics. 10:M111.009993. 2011.PubMed/NCBI View Article : Google Scholar

60 

Jantsch MF, Quattrone A, O'Connell M, Helm M, Frye M, Macias-Gonzales M, Ohman M, Ameres S, Willems L, Fuks F, et al: Positioning Europe for the EPITRANSCRIPTOMICS challenge. RNA Biol. 15:829–831. 2018.PubMed/NCBI View Article : Google Scholar

61 

González-Gomariz J, Guruceaga E, López-Sánchez M and Segura V: Proteogenomics in the context of the human proteome project (HPP). Expert Rev Proteomics. 16:267–275. 2019.PubMed/NCBI View Article : Google Scholar

62 

Tanase C, Albulescu R and Neagu M: Updates in immune-based multiplex assays. J Immunoassay Immunochem. 40:1–2. 2019.PubMed/NCBI View Article : Google Scholar

63 

Popa ML, Albulescu R, Neagu M, Eugen Hinescu ME and Tanase C: Multiplex assay for multiomics advances in personalized-precision medicine. J Immunoassay Immunochem. 40:3–25. 2019.PubMed/NCBI View Article : Google Scholar

64 

Cronin KA, Lake AJ, Scott S, Sherman RL, Noone AM, Howlader N, Henley SJ, Anderson RN, Firth AU, Ma J, et al: Annual report to the nation on the status of cancer, part I: National cancer statistics. Cancer. 124:2785–2800. 2018.PubMed/NCBI View Article : Google Scholar

65 

Smith ER: A two-tiered health care system: Is there anything new? Can J Cardiol. 23:915–916. 2007.(In English; French). PubMed/NCBI

66 

Alyass A, Turcotte M and Meyre D: From big data analysis to personalized medicine for all: Challenges and opportunities. BMC Med Genomics. 8(33)2015. View Article : Google Scholar

67 

Fröhlich H, Balling R, Beerenwinkel N, Kohlbacher O, Kumar S, Lengauer T, Maathuis MH, Moreau Y, Murphy SA, Przytycka TM, et al: From hype to reality: Data science enabling personalized medicine. BMC Med. 16(150)2018.PubMed/NCBI View Article : Google Scholar

68 

Wong SH: Pharmacogenomics and personalized medicine. In: Handbook of drug monitoring methods: Therapeutics and drugs of abuse. Dasgupta A (ed). Humana Press, New York, NY. pp211–223. 2007.

69 

Yu X, Schneiderhan-Marra N and Joos TO: Protein microarrays for personalized medicine. Clin Chem. 56:376–387. 2010.PubMed/NCBI View Article : Google Scholar

70 

Masuda M and Yamada T: Signalling pathway profiling by reverse-phase protein array for personalized cancer medicine. Biochim Biophys Acta. 1854:651–657. 2015.PubMed/NCBI View Article : Google Scholar

71 

Rosa M: Advances in the molecular analysis of breast cancer: Pathway toward personalized medicine. Cancer Control. 22:211–219. 2015.PubMed/NCBI View Article : Google Scholar

72 

Kim DC, Wang X, Yang CR and Gao JX: A framework for personalized medicine: Prediction of drug sensitivity in cancer by proteomic profiling. Proteome Sci. 10 (Suppl 1)(S13)2012.PubMed/NCBI View Article : Google Scholar

73 

Wistuba II, Gelovani JG, Jacoby JJ, Davis SE and Herbst RS: Methodological and practical challenges for personalized cancer therapies. Nat Rev Clin Oncol. 8:135–141. 2011.PubMed/NCBI View Article : Google Scholar

74 

Mueller C, Liotta L and Espina V: Reverse phase protein microarrays advance to use in clinical trials. Mol Oncol. 4:461–481. 2010.PubMed/NCBI View Article : Google Scholar

75 

Kornblau SM, Tibes R, Qiu YH, Chen W, Kantarjian HM, Andreeff M, Coombes KR and Mills GB: Functional proteomic profiling of AML predicts response and survival. Blood. 113:154–164. 2009.PubMed/NCBI View Article : Google Scholar

76 

Cain JW, Hauptschein RS, Stewart JK, Bagci T, Sahagian GG and Jay DG: Identification of CD44 as a surface biomarker for drug resistance by surface proteome signature technology. Mol Cancer Res. 9:637–647. 2011.PubMed/NCBI View Article : Google Scholar

77 

Liotta LA, Espina V, Mehta AI, Calvert V, Rosenblatt K, Geho D, Munson PJ, Young L, Wulfkuhle J and Petricoin EF III: Protein microarrays: Meeting analytical challenges for clinical applications. Cancer Cell. 3:317–325. 2003.PubMed/NCBI View Article : Google Scholar

78 

Spurrier B, Ramalingam S and Nishizuka S: Reverse-phase protein lysate microarrays for cell signaling analysis. Nat Protoc. 3:1796–1808. 2008.PubMed/NCBI View Article : Google Scholar

79 

Kim YB, Yang CR and Gao J: Functional proteomic pattern identification under low dose ionizing radiation. Artif Intell Med. 49:177–185. 2010.PubMed/NCBI View Article : Google Scholar

80 

Wang X, Dong Y, Jiwani AJ, Zou Y, Pastor J, Kuro OM, Habib AA, Ruan M, Boothman DA and Yang CR: Improved protein arrays for quantitative systems analysis of the dynamics of signaling pathway interactions. Proteome Sci. 9(53)2011.PubMed/NCBI View Article : Google Scholar

81 

Laforte V, Lo PS, Li H and Juncker D: Antibody colocalization microarray for cross-reactivity-free multiplexed protein analysis. Methods Mol Biol. 1619:239–261. 2017.PubMed/NCBI View Article : Google Scholar

82 

Lim MS, Carlson ML, Crockett DK, Fillmore GC, Abbott DR, Elenitoba-Johnson OF, Tripp SR, Rassidakis GZ, Medeiros LJ, Szankasi P and Elenitoba-Johnson KS: The proteomic signature of NPM/ALK reveals deregulation of multiple cellular pathways. Blood. 114:1585–1595. 2009.PubMed/NCBI View Article : Google Scholar

83 

Gnjatic S, Wheeler C, Ebner M, Ritter E, Murray A, Altorki NK, Ferrara CA, Hepburne-Scott H, Joyce S, Koopman J, et al: Seromic analysis of antibody responses in non-small cell lung cancer patients and healthy donors using conformational protein arrays. J Immunol Methods. 341:50–58. 2009.PubMed/NCBI View Article : Google Scholar

84 

Gaudreau PO, Peng D, Rodriguez BL, Fradette J, Gibson L, Kundu S, Chen L, et al: Co-clinical trials of MEK inhibitor, anti PD-L1 and anti CTLA-4 combination treatment in non-small cell lung cancer. J ImmunoTherapy Cancer. 6 (Suppl 1)(S114)2018.

85 

Vilgelm AE, Johnson DB and Richmond A: Combinatorial approach to cancer immunotherapy: Strength in numbers. J Leukoc Biol. 100:275–290. 2016.PubMed/NCBI View Article : Google Scholar

86 

Terracciano R, Pelaia G, Preianò M and Savino R: Asthma and COPD proteomics: Current approaches and future directions. Proteomics Clin Appl. 9:203–220. 2015. View Article : Google Scholar

87 

Vizcaino JA, Csordas A, Del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T, et al: 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44(11033)2016.PubMed/NCBI View Article : Google Scholar

88 

Hamsten C, Häggmark A, Grundström J, Mikus M, Lindskog C, Konradsen JR, Eklund A, Pershagen G, Wickman M, Grunewald J, et al: Protein profiles of CCL5, HPGDS, and NPSR1 in plasma reveal association with childhood asthma. Allergy. 71:1357–1361. 2016.PubMed/NCBI View Article : Google Scholar

89 

Gharib SA, Nguyen EV, Lai Y, Plampin JD, Goodlett DR and Hallstrand TS: Induced sputum proteome in healthy subjects and asthmatic patients. J Allergy Clin Immunol. 128:1176–1184, e1176. 2011.PubMed/NCBI View Article : Google Scholar

90 

Ohlmeier S, Nieminen P, Gao J, Kanerva T, Rönty M, Toljamo T, Bergmann U, Mazur W and Pulkkinen V: Lung tissue proteomics identifies elevated transglutaminase 2 levels in stable chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 310:L1155–L1165. 2016.PubMed/NCBI View Article : Google Scholar

91 

Barnes PJ: Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol. 131:636–645. 2013.PubMed/NCBI View Article : Google Scholar

92 

Levitt JE and Rogers AJ: Proteomic study of acute respiratory distress syndrome: Current knowledge and implications for drug development. Expert Rev Proteomics. 13:457–469. 2016.PubMed/NCBI View Article : Google Scholar

93 

Priyadharshini VS and Teran LM: Personalized medicine in respiratory disease: Role of proteomics. Adv Protein Chem Struct Biol. 102:115–146. 2016.PubMed/NCBI View Article : Google Scholar

94 

Foster MW, Morrison LD, Todd JL, Snyder LD, Thompson JW, Soderblom EJ, Plonk K, Weinhold KJ, Townsend R, Minnich A and Moseley MA: Quantitative proteomics of bronchoalveolar lavage fluid in idiopathic pulmonary fibrosis. J Proteome Res. 14:1238–1249. 2015.PubMed/NCBI View Article : Google Scholar

95 

Lavoie JR, Ormiston ML, Perez-Iratxeta C, Courtman DW, Jiang B, Ferrer E, Caruso P, Southwood M, Foster WS, Morrell NW and Stewart DJ: Proteomic analysis implicates translationally controlled tumour protein as a novel mediator of occlusive vascular remodeling in pulmonary arterial hypertension. Circulation. 129:2125–2135. 2014.PubMed/NCBI View Article : Google Scholar

96 

Abdul-Salam VB, Wharton J, Cupitt J, Berryman M, Edwards RJ and Wilkins MR: Proteomic analysis of lung tissues from patients with pulmonary arterial hypertension. Circulation. 122:2058–2067. 2010.PubMed/NCBI View Article : Google Scholar

97 

Kan M, Shumyatcher M and Himes BE: Using omics approaches to understand pulmonary diseases. Respir Res. 18(149)2017.PubMed/NCBI View Article : Google Scholar

98 

Cohen AS, Khalil FK, Welsh EA, Schabath MB, Enkemann SA, Davis A, Zhou JM, Boulware DC, Kim J, Haura EB and Morse DL: Cell-surface marker discovery for lung cancer. Oncotarget. 8:113373–113402. 2017.PubMed/NCBI View Article : Google Scholar

99 

Monette A, Bergeron D, Ben Amor A, Meunier L, Caron C, Mes-Masson AM, Kchir N, Hamzaoui K, Jurisica I and Lapointe R: Immune-enrichment of non-small cell lung cancer baseline biopsies for multiplex profiling define prognostic immune checkpoint combinations for patient stratification. J Immunother Cancer. 7(86)2019.PubMed/NCBI View Article : Google Scholar

100 

Schwill M, Tamaskovic R, Gajadhar AS, Kast F, White FM and Plückthun A: Systemic analysis of tyrosine kinase signaling reveals a common adaptive response program in a HER2-positive breast cancer. Sci Signal. 12:eaau2875. 2019.PubMed/NCBI View Article : Google Scholar

101 

Hsu PY, Wu VS, Kanaya N, Petrossian K, Hsu HK, Nguyen D, Schmolze D, Kai M, Liu CY, Lu H, et al: Dual mTOR kinase inhibitor MLN0128 sensitizes HR+/HER2+ breast cancer patient-derived xenografts to trastuzumab or fulvestrant. Clin Cancer Res. 24:395–406. 2018.PubMed/NCBI View Article : Google Scholar

102 

Lee J, Geiss GK, Demirkan G, Vellano CP, Filanoski B, Lu Y, Ju Z, Yu S, Guo H, Bogatzki LY, et al: Implementation of a multiplex and quantitative proteomics platform for assessing protein lysates using DNA-barcoded antibodies. Mol Cell Proteomics. 17:1245–1258. 2018.PubMed/NCBI View Article : Google Scholar

103 

Kars MD and Yıldırım G: Determination of the target proteins in chemotherapy resistant breast cancer stem cell-like cells by protein array. Eur J Pharmacol. 848:23–29. 2019.PubMed/NCBI View Article : Google Scholar

104 

Li M, Li H, Liu F, Bi R, Tu X, Chen L, Ye S and Cheng X: Characterization of ovarian clear cell carcinoma using target drug-based molecular biomarkers: Implications for personalized cancer therapy. J Ovarian Res. 10(9)2017.PubMed/NCBI View Article : Google Scholar

105 

Mabuchi S, Sugiyama T and Kimura T: Clear cell carcinoma of the ovary: Molecular insights and future therapeutic perspectives. J Gynecol Oncol. 27(e31)2016.PubMed/NCBI View Article : Google Scholar

106 

Yanaihara N, Hirata Y, Yamaguchi N, Noguchi Y, Saito M, Nagata C, Takakura S, Yamada K and Okamoto A: Antitumor effects of interleukin-6 (IL-6)/interleukin-6 receptor (IL-6R) signalling pathway inhibition in clear cell carcinoma of the ovary. Mol Carcinog. 55:832–841. 2016.PubMed/NCBI View Article : Google Scholar

107 

Yamashita Y: Ovarian cancer: New developments in clear cell carcinoma and hopes for targeted therapy. Jpn J Clin Oncol. 45:405–407. 2015.PubMed/NCBI View Article : Google Scholar

108 

Sereni MI, Baldelli E, Gambara G, Deng J, Zanotti L, Bandiera E, Bignotti E, Ragnoli M, Tognon G, Ravaggi A, et al: Functional characterization of epithelial ovarian cancer histotypes by drug target based protein signaling activation mapping: Implications for personalized cancer therapy. Proteomics. 15:365–373. 2015.PubMed/NCBI View Article : Google Scholar

109 

di Martino S, De Luca G, Grassi L, Federici G, Alfonsi R, Signore M, Addario A, De Salvo L, Francescangeli F, Sanchez M, et al: Renal cancer: New models and approach for personalizing therapy. J Exp Clin Cancer Res. 37(217)2018.PubMed/NCBI View Article : Google Scholar

110 

Hoff FW, Hu CW, Qiu Y, Ligeralde A, Yoo SY, Mahmud H, de Bont ESJM, Qutub AA, Horton TM and Kornblau SM: Recognition of recurrent protein expression patterns in pediatric acute myeloid leukemia identified new therapeutic targets. Mol Cancer Res. 16:1275–1286. 2018.PubMed/NCBI View Article : Google Scholar

111 

Ragon BK, Odenike O, Baer MR, Stock W, Borthakur G, Patel K, Han L, Chen H, Ma H, Joseph L, et al: Oral MEK 1/2 inhibitor trametinib in combination with AKT inhibitor GSK2141795 in patients with acute myeloid leukemia with RAS mutations: A phase II study. Clin Lymphoma Myeloma Leuk. S2152-2650:31542–31548. 2019.PubMed/NCBI View Article : Google Scholar

112 

Yang Q, Bavi P, Wang JY and Roehrl MH: Immuno-proteomic discovery of tumour tissue autoantigens identifies olfactomedin 4, CD11b, and integrin alpha-2 as markers of colorectal cancer with liver metastases. J Proteomics. 168:53–65. 2017.PubMed/NCBI View Article : Google Scholar

113 

Hagman H, Bendahl PO, Lidfeldt J, Belting M and Johnsson A: Protein array profiling of circulating angiogenesis-related factors during bevacizumab containing treatment in metastatic colorectal cancer. PLoS One. 13(e0209838)2018.PubMed/NCBI View Article : Google Scholar

114 

Liu P, Souma T, Wei AZ, Xie X, Luo X and Jin J: Personalized peptide arrays for detection of HLA alloantibodies in organ transplantation. J Vis Exp. 2017.PubMed/NCBI View Article : Google Scholar

115 

Soni A, Gowthamarajan K and Radhakrishnan A: Personalized medicine and customized drug delivery systems: The new trend of drug delivery and disease management. Int J Pharm Compd. 22:108–121. 2018.PubMed/NCBI

116 

Syafrizayanti Lueong SS, Di C, Schaefer JV, Plückthun A and Hoheisel JD: Personalised proteome analysis by means of protein microarrays made from individual patient samples. Sci Rep. 7(39756)2017.PubMed/NCBI View Article : Google Scholar

Related Articles

Journal Cover

May 2019
Volume 1 Issue 3

Print ISSN: 2632-2900
Online ISSN:2632-2919

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Neagu, M., Bostan, M., & Constantin, C. (2019). Protein microarray technology: Assisting personalized medicine in oncology (Review). World Academy of Sciences Journal, 1, 113-124. https://doi.org/10.3892/wasj.2019.15
MLA
Neagu, M., Bostan, M., Constantin, C."Protein microarray technology: Assisting personalized medicine in oncology (Review)". World Academy of Sciences Journal 1.3 (2019): 113-124.
Chicago
Neagu, M., Bostan, M., Constantin, C."Protein microarray technology: Assisting personalized medicine in oncology (Review)". World Academy of Sciences Journal 1, no. 3 (2019): 113-124. https://doi.org/10.3892/wasj.2019.15