|
1
|
Zhang D, Tang Z, Huang H, Zhou G, Cui C,
Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, et al: Metabolic
regulation of gene expression by histone lactylation. Nature.
574:575–580. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Warburg O: The metabolism of carcinoma
cells1. J Cancer Res. 9:148–163. 1925. View Article : Google Scholar
|
|
3
|
Wang L, Wang Y, Meng M, Ma N, Wei G, Huo
R, Chang G and Shen X: High-concentrate diet elevates histone
lactylation mediated by p300/CBP through the upregulation of lactic
acid and induces an inflammatory response in mammary gland of dairy
cows. Microb Pathog. 180:1061352023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Rong Y, Dong F, Zhang G, Tang M, Zhao X,
Zhang Y, Tao P and Cai H: The crosstalking of lactate-Histone
lactylation and tumor. Proteomics Clin Appl. 17:22001022023.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Felmlee MA, Jones RS, Rodriguez-Cruz V,
Follman KE and Morris ME: Monocarboxylate transporters (SLC16):
Function, regulation, and role in health and disease. Pharmacol
Rev. 72:466–485. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Brooks GA: The science and translation of
lactate shuttle theory. Cell Metab. 27:757–785. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Xu K, Zhang K, Wang Y and Gu Y:
Comprehensive review of histone lactylation: Structure, function,
and therapeutic targets. Biochem Pharmacol. 225:1163312024.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Dai E, Wang W and Li Y, Ye D and Li Y:
Lactate and lactylation: Behind the development of tumors. Cancer
Lett. 591:2168962024. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Latham T, Mackay L, Sproul D, Karim M,
Culley J, Harrison DJ, Hayward L, Langridge-Smith P, Gilbert N and
Ramsahoye BH: Lactate, a product of glycolytic metabolism, inhibits
histone deacetylase activity and promotes changes in gene
expression. Nucleic Acids Res. 40:4794–4803. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zhang C, Zhou L, Zhang M, Du Y, Li C, Ren
H and Zheng L: H3K18 lactylation potentiates immune escape of
non-small cell lung cancer. Cancer Res. 84:3589–3601. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Yang D, Zheng H, Lu W, Tian X, Sun Y and
Peng H: Histone lactylation is involved in mouse oocyte maturation
and embryo development. Int J Mol Sci. 25:48212024. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Gao X, Pang C, Fan Z, Wang Y, Duan Y and
Zhan H: Regulation of newly identified lysine lactylation in
cancer. Cancer Lett. 587:2166802024. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhu R, Ye X, Lu X, Xiao L, Yuan M, Zhao H,
Guo D, Meng Y, Han H, Luo S, et al: ACSS2 acts as a lactyl-CoA
synthetase and couples KAT2A to function as a lactyltransferase for
histone lactylation and tumor immune evasion. Cell Metab.
37:361–376.e7. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hu Y, He Z, Li Z, Wang Y, Wu N, Sun H,
Zhou Z, Hu Q and Cong X: Lactylation: The novel histone
modification influence on gene expression, protein function, and
disease. Clin Epigenetics. 16:722024. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Liberti MV and Locasale JW: Histone
lactylation: A new role for glucose metabolism. Trends Biochem Sci.
45:179–182. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bowers EM, Yan G, Mukherjee C, Orry A,
Wang L, Holbert MA, Crump NT, Hazzalin CA, Liszczak G, Yuan H, et
al: Virtual ligand screening of the p300/CBP histone
acetyltransferase: Identification of a selective small molecule
inhibitor. Chem Biol. 17:471–482. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Yang K, Fan M, Wang X, Xu J, Wang Y, Tu F,
Gill PS, Ha T, Liu L, Williams DL and Li C: Lactate promotes
macrophage HMGB1 lactylation, acetylation, and exosomal release in
polymicrobial sepsis. Cell Death Differ. 29:133–146. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Lin J, Ji Z, Di Z, Zhang Y, Yan C and Zeng
S: Overexpression of Tfap2a in mouse oocytes impaired spindle and
chromosome organization. Int J Mol Sci. 23:143762022. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wang N, Wang W, Wang X, Mang G, Chen J,
Yan X, Tong Z, Yang Q, Wang M, Chen L, et al: Histone lactylation
boosts reparative gene activation post-myocardial infarction. Circ
Res. 131:893–908. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Mutlu B and Puigserver P: GCN5
acetyltransferase in cellular energetic and metabolic processes.
Biochim Biophys Acta Gene Regul Mech. 1864:1946262021. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chen H, Li Y, Li H, Chen X, Fu H, Mao D,
Chen W, Lan L, Wang C, Hu K, et al: NBS1 lactylation is required
for efficient DNA repair and chemotherapy resistance. Nature.
631:663–669. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Niu Z, Chen C, Wang S, Lu C, Wu Z, Wang A,
Mo J, Zhang J, Han Y, Yuan Y, et al: HBO1 catalyzes lysine
lactylation and mediates histone H3K9la to regulate gene
transcription. Nat Commun. 15:35612024. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Hu X, Huang X, Yang Y, Sun Y, Zhao Y,
Zhang Z, Qiu D, Wu Y, Wu G and Lei L: Dux activates
metabolism-lactylation-MET network during early iPSC reprogramming
with Brg1 as the histone lactylation reader. Nucleic Acids Res.
52:5529–5548. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
de Ruijter AJ, van Gennip AH, Caron HN,
Kemp S and van Kuilenburg AB: Histone deacetylases (HDACs):
Characterization of the classical HDAC family. Biochem J.
370:737–749. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zu H, Li C, Dai C, Pan Y, Ding C, Sun H,
Zhang X, Yao X, Zang J and Mo X: SIRT2 functions as a histone
delactylase and inhibits the proliferation and migration of
neuroblastoma cells. Cell Discov. 8:542022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Jennings EQ, Ray JD, Zerio CJ, Trujillo
MN, McDonald DM, Chapman E, Spiegel DA and Galligan JJ: Sirtuin 2
regulates protein LactoylLys modifications. Chembiochem.
22:2102–2106. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Moreno-Yruela C, Zhang D, Wei W, Bæk M,
Liu W, Gao J, Danková D, Nielsen AL, Bolding JE, Yang L, et al:
Class I histone deacetylases (HDAC1-3) are histone lysine
delactylases. Sci Adv. 8:eabi66962022. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Gaffney DO, Jennings EQ, Anderson CC,
Marentette JO, Shi T, Schou Oxvig AM, Streeter MD, Johannsen M,
Spiegel DA, Chapman E, et al: Non-enzymatic lysine lactoylation of
glycolytic enzymes. Cell Chem Biol. 27:206–213.e6. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Magistretti PJ and Allaman I: Lactate in
the brain: From metabolic end-product to signalling molecule. Nat
Rev Neurosci. 19:235–249. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hagihara H, Shoji H, Otabi H, Toyoda A,
Katoh K, Namihira M and Miyakawa T: Protein lactylation induced by
neural excitation. Cell Rep. 37:1098202021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Dai SK, Liu PP, Li X, Jiao LF, Teng ZQ and
Liu CM: Dynamic profiling and functional interpretation of histone
lysine crotonylation and lactylation during neural development.
Development. 149:dev2000492022. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wang Y, Wang W, Su L, Ji F, Zhang M, Xie
Y, Zhang T and Jiao J: BACH1 changes microglial metabolism and
affects astrogenesis during mouse brain development. Dev Cell.
59:108–124.e7. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Mason S: Lactate shuttles in
neuroenergetics-homeostasis, allostasis and beyond. Front Neurosci.
11:432017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Wang Y, Li P, Xu Y, Feng L, Fang Y, Song
G, Xu L, Zhu Z, Wang W, Mei Q and Xie M: Lactate metabolism and
histone lactylation in the central nervous system disorders:
Impacts and molecular mechanisms. J Neuroinflammation. 21:3082024.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ponzetti M and Rucci N: Osteoblast
differentiation and signaling: Established concepts and emerging
topics. Int J Mol Sci. 22:66512021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhao L, Huang J, Guo R, Wang Y, Chen D and
Xing L: Smurf1 inhibits mesenchymal stem cell proliferation and
differentiation into osteoblasts through JunB degradation. J Bone
Miner Res. 25:1246–1256. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Nian F, Qian Y, Xu F, Yang M, Wang H and
Zhang Z: LDHA promotes osteoblast differentiation through histone
lactylation. Biochem Biophys Res Commun. 615:31–35. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Vander Heiden MG, Cantley LC and Thompson
CB: Understanding the warburg effect: The metabolic requirements of
cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kenner L, Hoebertz A, Beil FT, Keon N,
Karreth F, Eferl R, Scheuch H, Szremska A, Amling M,
Schorpp-Kistner M, et al: Mice lacking JunB are osteopenic due to
cell-autonomous osteoblast and osteoclast defects. J Cell Biol.
164:613–623. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Wu J, Hu M, Jiang H, Ma J, Xie C, Zhang Z,
Zhou X, Zhao J, Tao Z, Meng Y, et al: Endothelial cell-derived
lactate triggers bone mesenchymal stem cell histone lactylation to
attenuate osteoporosis. Adv Sci (Weinh). 10:e23013002023.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lopez Krol A, Nehring HP, Krause FF, Wempe
A, Raifer H, Nist A, Stiewe T, Bertrams W, Schmeck B, Luu M, et al:
Lactate induces metabolic and epigenetic reprogramming of
pro-inflammatory Th17 cells. EMBO Rep. 23:e546852022. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Tian Q and Zhou L: Lactate activates
germline and cleavage embryo genes in mouse embryonic stem cells.
Cells. 11:5482022. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yang W, Wang P, Cao P, Wang S, Yang Y, Su
H and Nashun B: Hypoxic in vitro culture reduces histone
lactylation and impairs pre-implantation embryonic development in
mice. Epigenetics Chromatin. 14:572021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Pandkar MR, Sinha S, Samaiya A and Shukla
S: Oncometabolite lactate enhances breast cancer progression by
orchestrating histone lactylation-dependent c-Myc expression.
Transl Oncol. 37:1017582023. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Dichtl S, Lindenthal L, Zeitler L, Behnke
K, Schlösser D, Strobl B, Scheller J, El Kasmi KC and Murray PJ:
Lactate and IL6 define separable paths of inflammatory metabolic
adaptation. Sci Adv. 7:eabg35052021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Angell HK, Bruni D, Barrett JC, Herbst R
and Galon J: The immunoscore: Colon cancer and beyond. Clin Cancer
Res. 26:332–339. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wang J, Mao L, Wang J, Zhang X, Wu M, Wen
Q and Yu S: Beyond metabolic waste: Lysine lactylation and its
potential roles in cancer progression and cell fate determination.
Cell Oncol. 46:465–480. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Bader JE, Voss K and Rathmell JC:
Targeting metabolism to improve the tumor microenvironment for
cancer immunotherapy. Mol Cell. 78:1019–1033. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Yang Z, Zheng Y and Gao Q: Lysine
lactylation in the regulation of tumor biology. Trends Endocrinol
Metab. 35:720–731. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wang T, Ye Z, Li Z, Jing DS, Fan GX, Liu
MQ, Zhuo QF, Ji SR, Yu XJ, Xu XW and Qin Y: Lactate-induced protein
lactylation: A bridge between epigenetics and metabolic
reprogramming in cancer. Cell Prolif. 56:e134782023. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Ivashkiv LB: The hypoxia-lactate axis
tempers inflammation. Nat Rev Immunol. 20:85–86. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhao P, Qiao C, Wang J, Zhou Y and Zhang
C: Histone lactylation facilitates hepatocellular carcinoma
progression by upregulating endothelial cell-specific molecule 1
expression. Mol Carcinog. 63:2078–2089. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yu J, Chai P, Xie M, Ge S, Ruan J, Fan X
and Jia R: Histone lactylation drives oncogenesis by facilitating
m6A reader protein YTHDF2 expression in ocular melanoma.
Genome Biol. 22:852021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wang J, Liu Z, Xu Y, Wang Y, Wang F, Zhang
Q, Ni C, Zhen Y, Xu R, Liu Q, et al: Enterobacterial LPS-inducible
LINC00152 is regulated by histone lactylation and promotes cancer
cells invasion and migration. Front Cell Infect Microbiol.
12:9138152022. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Jiang J, Huang D, Jiang Y, Hou J, Tian M,
Li J, Sun L, Zhang Y, Zhang T, Li Z, et al: Lactate modulates
cellular metabolism through histone lactylation-mediated gene
expression in non-small cell lung cancer. Front Oncol.
11:6475592021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Sun L, Zhang Y, Yang B, Sun S, Zhang P,
Luo Z, Feng T, Cui Z, Zhu T, Li Y, et al: Lactylation of METTL16
promotes cuproptosis via m6A-modification on FDX1 mRNA
in gastric cancer. Nat Commun. 14:65232023. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
He Y, Ji Z, Gong Y, Fan L, Xu P, Chen X,
Miao J, Zhang K, Zhang W, Ma P, et al: Numb/Parkin-directed
mitochondrial fitness governs cancer cell fate via metabolic
regulation of histone lactylation. Cell Rep. 42:1120332023.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Arneth B: Tumor microenvironment. Medicina
(Kaunas). 56:152019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Guo Z, Tang Y, Wang S, Huang Y, Chi Q, Xu
K and Xue L: Natural product fargesin interferes with H3 histone
lactylation via targeting PKM2 to inhibit non-small cell lung
cancer tumorigenesis. Biofactors. 50:592–607. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wei S, Zhang J, Zhao R, Shi R, An L, Yu Z,
Zhang Q, Zhang J, Yao Y, Li H and Wang H: Histone lactylation
promotes malignant progression by facilitating USP39 expression to
target PI3K/AKT/HIF-1α signal pathway in endometrial carcinoma.
Cell Death Discov. 10:1212024. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Vinay DS, Ryan EP, Pawelec G, Talib WH,
Stagg J, Elkord E, Lichtor T, Decker WK, Whelan RL, Kumara HMCS, et
al: Immune evasion in cancer: Mechanistic basis and therapeutic
strategies. Semin Cancer Biol. 35 (Suppl):S185–S198. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhang Y, Song H, Li M and Lu P: Histone
lactylation bridges metabolic reprogramming and epigenetic rewiring
in driving carcinogenesis: Oncometabolite fuels oncogenic
transcription. Clin Transl Med. 14:e16142024. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Chen L, Huang L, Gu Y, Cang W, Sun P and
Xiang Y: Lactate-lactylation hands between metabolic reprogramming
and immunosuppression. Int J Mol Sci. 23:119432022. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kumagai S, Koyama S, Itahashi K,
Tanegashima T, Lin YT, Togashi Y, Kamada T, Irie T, Okumura G, Kono
H, et al: Lactic acid promotes PD-1 expression in regulatory T
cells in highly glycolytic tumor microenvironments. Cancer Cell.
40:201–218.e9. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Gottfried E, Kunz-Schughart LA, Ebner S,
Mueller-Klieser W, Hoves S, Andreesen R, Mackensen A and Kreutz M:
Tumor-derived lactic acid modulates dendritic cell activation and
antigen expression. Blood. 107:2013–2021. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Irizarry-Caro RA, McDaniel MM, Overcast
GR, Jain VG, Troutman TD and Pasare C: TLR signaling adapter BCAP
regulates inflammatory to reparatory macrophage transition by
promoting histone lactylation. Proc Natl Acad Sci USA.
117:30628–30638. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Li XM, Yang Y, Jiang FQ, Hu G, Wan S, Yan
WY, He XS, Xiao F, Yang XM, Guo X, et al: Histone lactylation
inhibits RARγ expression in macrophages to promote colorectal
tumorigenesis through activation of TRAF6-IL-6-STAT3 signaling.
Cell Rep. 43:1136882024. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Giles JR, Globig AM, Kaech SM and Wherry
EJ: CD8+ T cells in the cancer-immunity cycle. Immunity.
56:2231–2253. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Raychaudhuri D, Singh P, Chakraborty B,
Hennessey M, Tannir AJ, Byregowda S, Natarajan SM, Trujillo-Ocampo
A, Im JS and Goswami S: Histone lactylation drives CD8+
T cell metabolism and function. Nat Immunol. 25:2140–2151. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Vonderheide RH: CD40 Agonist antibodies in
cancer immunotherapy. Annu Rev Med. 71:47–58. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Cueto FJ and Sancho D: The Flt3L/Flt3 axis
in dendritic cell biology and cancer immunotherapy. Cancers
(Basel). 13:15252021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wu G, Pan B, Shi H, Yi Y, Zheng X, Ma H,
Zhao M, Zhang Z, Cheng L, Huang Y and Guo W: Neutrophils' dual role
in cancer: From tumor progression to immunotherapeutic potential.
Int Immunopharmacol. 140:1127882024. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhou J, Xu W, Wu Y, Wang M, Zhang N, Wang
L, Feng Y, Zhang T, Wang L and Mao A: GPR37 promotes colorectal
cancer liver metastases by enhancing the glycolysis and histone
lactylation via Hippo pathway. Oncogene. 42:3319–3330. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Li W, Zhou C, Yu L, Hou Z, Liu H, Kong L,
Xu Y, He J, Lan J, Ou Q, et al: Tumor-derived lactate promotes
resistance to bevacizumab treatment by facilitating autophagy
enhancer protein RUBCNL expression through histone H3 lysine 18
lactylation (H3K18la) in colorectal cancer. Autophagy. 20:114–130.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Liu ZL, Chen HH, Zheng LL, Sun LP and Shi
L: Angiogenic signaling pathways and anti-angiogenic therapy for
cancer. Signal Transduct Target Ther. 8:1982023. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Li YL, Zhao H and Ren XB: Relationship of
VEGF/VEGFR with immune and cancer cells: Staggering or forward?
Cancer Biol Med. 13:206–214. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Yu Y, Huang X, Liang C and Zhang P:
Evodiamine impairs HIF1A histone lactylation to inhibit
Sema3A-mediated angiogenesis and PD-L1 by inducing ferroptosis in
prostate cancer. Eur J Pharmacol. 957:1760072023. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wang J, Yang P, Yu T, Gao M, Liu D, Zhang
J, Lu C, Chen X, Zhang X and Liu Y: Lactylation of PKM2 suppresses
inflammatory metabolic adaptation in pro-inflammatory macrophages.
Int J Biol Sci. 18:6210–6225. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Colegio OR, Chu NQ, Szabo AL, Chu T,
Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC,
Phillips GM, et al: Functional polarization of tumour-associated
macrophages by tumour-derived lactic acid. Nature. 513:559–563.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Henderson NC, Rieder F and Wynn TA:
Fibrosis: From mechanisms to medicines. Nature. 587:555–566. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Rho H, Terry AR, Chronis C and Hay N:
Hexokinase 2-mediated gene expression via histone lactylation is
required for hepatic stellate cell activation and liver fibrosis.
Cell Metab. 35:1406–1423.e8. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wang Y, Li H, Jiang S, Fu D, Lu X, Lu M,
Li Y, Luo D, Wu K, Xu Y, et al: The glycolytic enzyme PFKFB3 drives
kidney fibrosis through promoting histone lactylation-mediated
NF-κB family activation. Kidney Int. 106:226–240. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Liu C, Zhang Q, Zhou H, Jin L, Liu C, Yang
M, Zhao X, Ding W, Xie W and Kong H: GLP-1R activation attenuates
the progression of pulmonary fibrosis via disrupting NLRP3
inflammasome/PFKFB3-driven glycolysis interaction and histone
lactylation. J Transl Med. 22:9542024. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Li X, Chen M, Chen X, He X, Li X, Wei H,
Tan Y, Min J, Azam T, Xue M, et al: TRAP1 drives smooth muscle cell
senescence and promotes atherosclerosis via HDAC3-primed histone H4
lysine 12 lactylation. Eur Heart J. 45:4219–4235. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Dulai PS, Singh S, Patel J, Soni M, Prokop
LJ, Younossi Z, Sebastiani G, Ekstedt M, Hagstrom H, Nasr P, et al:
Increased risk of mortality by fibrosis stage in nonalcoholic fatty
liver disease: Systematic review and meta-analysis. Hepatology.
65:1557–1565. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Tan Z, Sun H, Xue T, Gan C, Liu H, Xie Y,
Yao Y and Ye T: Liver fibrosis: Therapeutic targets and advances in
drug therapy. Front Cell Dev Biol. 9:7301762021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhou Y, Yan J, Huang H, Liu L, Ren L, Hu
J, Jiang X, Zheng Y, Xu L, Zhong F and Li X: The m6A
reader IGF2BP2 regulates glycolytic metabolism and mediates histone
lactylation to enhance hepatic stellate cell activation and liver
fibrosis. Cell Death Dis. 15:1892024. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Chen J, He J, Wang X, Bai L, Yang X, Chen
J, He Y and Chen K: Glis1 inhibits RTEC cellular senescence and
renal fibrosis by downregulating histone lactylation in DKD. Life
Sci. 361:1232932025. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Lan TH, Huang XQ and Tan HM: Vascular
fibrosis in atherosclerosis. Cardiovasc Pathol. 22:401–407. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Birch J and Gil J: Senescence and the
SASP: Many therapeutic avenues. Genes Dev. 34:1565–1576. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Moore KJ, Sheedy FJ and Fisher EA:
Macrophages in atherosclerosis: A dynamic balance. Nat Rev Immunol.
13:709–721. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zhang Y, Jiang H, Dong M, Min J, He X, Tan
Y, Liu F, Chen M, Chen X, Yin Q, et al: Macrophage MCT4 inhibition
activates reparative genes and protects from atherosclerosis by
histone H3 lysine 18 lactylation. Cell Rep. 43:1141802024.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Dong M, Zhang Y, Chen M, Tan Y, Min J, He
X, Liu F, Gu J, Jiang H, Zheng L, et al: ASF1A-dependent
P300-mediated histone H3 lysine 18 lactylation promotes
atherosclerosis by regulating EndMT. Acta Pharm Sin B.
14:3027–3048. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Nathan C and Ding A: Nonresolving
inflammation. Cell. 140:871–882. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Ahmed AU: An overview of inflammation:
Mechanism and consequences. Front Biol. 6:274–281. 2011. View Article : Google Scholar
|
|
96
|
Susser LI, Nguyen MA, Geoffrion M, Emerton
C, Ouimet M, Khacho M and Rayner KJ: Mitochondrial fragmentation
promotes inflammation resolution responses in macrophages via
histone lactylation. Mol Cell Biol. 43:531–546. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Rao Z, Zhu Y, Yang P, Chen Z, Xia Y, Qiao
C, Liu W, Deng H, Li J, Ning P and Wang Z: Pyroptosis in
inflammatory diseases and cancer. Theranostics. 12:4310–4329. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Yao X and Li C: Lactate dehydrogenase A
mediated histone lactylation induced the pyroptosis through
targeting HMGB1. Metab Brain Dis. 38:1543–1553. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
You X, Xie Y, Tan Q, Zhou C, Gu P, Zhang
Y, Yang S, Yin H, Shang B, Yao Y, et al: Glycolytic reprogramming
governs crystalline silica-induced pyroptosis and inflammation
through promoting lactylation modification. Ecotoxicol Environ Saf.
283:1169522024. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Nozaki T and Kanai M: Chemical catalysis
intervening to histone epigenetics. Acc Chem Res. 54:2313–2322.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Li D, Li Y, Yang S, Lu J, Jin X and Wu M:
Diet-gut microbiota-epigenetics in metabolic diseases: From
mechanisms to therapeutics. Biomed Pharmacother. 153:1132902022.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Zhao B, Lan Z, Li C and Wang H: Roles of
lactylation in lipid metabolism and related diseases. Cell Death
Discov. 11:4012025. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Du W, Tan S, Peng Y, Lin S, Wu Y, Ding K,
Chen C, Liu R, Cao Y, Li Z, et al: Histone lactylation-driven
YTHDC1 promotes hepatocellular carcinoma progression via lipid
metabolism remodeling. Cancer Lett. 611:2174262024. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Meng J, Yan C and Liu J: LDHA-mediated
histone lactylation promotes the nonalcoholic fatty liver disease
progression through targeting the METTL3/YTHDF1/SCD1 m6A axis.
Physiol Res. 73:985–999. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Yin X, Li M, Wang Y, Zhao G, Yang T, Zhang
Y, Guo J, Meng T, Du R, Li H, et al: Herbal medicine formula
Huazhuo Tiaozhi granule ameliorates dyslipidaemia via regulating
histone lactylation and miR-155-5p biogenesis. Clin Epigenetics.
15:1752023. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Renaudin F, Orliaguet L, Castelli F,
Fenaille F, Prignon A, Alzaid F, Combes C, Delvaux A, Adimy Y,
Cohen-Solal M, et al: Gout and pseudo-gout-related crystals promote
GLUT1-mediated glycolysis that governs NLRP3 and interleukin-1β
activation on macrophages. Ann Rheum Dis. 79:1506–1514. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Swanson KV, Deng M and Ting JPY: The NLRP3
inflammasome: Molecular activation and regulation to therapeutics.
Nat Rev Immunol. 19:477–489. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Roglic G: WHO Global report on diabetes: A
summary. Int J Noncommunicable Dis. 1:3–8. 2016. View Article : Google Scholar
|
|
109
|
Wu Y, Dong Y, Atefi M, Liu Y, Elshimali Y
and Vadgama JV: Lactate, a neglected factor for diabetes and cancer
interaction. Mediators Inflamm. 2016:64560182016. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Consitt LA, Koves TR, Muoio DM, Nakazawa
M, Newton CA and Houmard JA: Plasma acylcarnitines during insulin
stimulation in humans are reflective of age-related metabolic
dysfunction. Biochem Biophys Res Commun. 479:868–874. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Zou K, Hinkley JM, Park S, Zheng D, Jones
TE, Pories WJ, Hornby PJ, Lenhard J, Dohm GL and Houmard JA:
Altered tricarboxylic acid cycle flux in primary myotubes from
severely obese humans. Int J Obes (Lond). 43:895–905. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Shulman GI, Rothman DL, Jue T, Stein P,
DeFronzo RA and Shulman RG: Quantitation of muscle glycogen
synthesis in normal subjects and subjects with
non-insulin-dependent diabetes by 13C nuclear magnetic resonance
spectroscopy. N Engl J Med. 322:223–228. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Maschari D, Saxena G, Law TD, Walsh E,
Campbell MC and Consitt LA: Lactate-induced lactylation in skeletal
muscle is associated with insulin resistance in humans. Front
Physiol. 13:9513902022. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Chen X, Wang Y, Wang JN, Zhang YC, Zhang
YR, Sun RX, Qin B, Dai YX, Zhu HJ, Zhao JX, et al:
Lactylation-driven FTO targets CDK2 to aggravate microvascular
anomalies in diabetic retinopathy. EMBO Mol Med. 16:294–318. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Li T, Yang G, Zhu Y, Wu Y, Chen XY, Lan D,
Tian KL and Liu LM: Diabetes and hyperlipidemia induce dysfunction
of VSMCs: Contribution of the metabolic inflammation/miRNA pathway.
Am J Physiol Endocrinol Metab. 308:E257–E269. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Zhu Y, Chen J, Zhang J, Wang F and Liu R:
A new mechanism of arterial calcification in diabetes: Interaction
between H3K18 lactylation and CHI3L1. Clin Sci (Lond). 139:115–130.
2025. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Chen J, Feng Q, Qiao Y, Pan S, Liang L,
Liu Y, Zhang X, Liu D and Liu Z and Liu Z: ACSF2 and lysine
lactylation contribute to renal tubule injury in diabetes.
Diabetologia. 67:1429–1443. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Singh M, Afonso J, Sharma D, Gupta R and
Kumar V, Rani R, Baltazar F and Kumar V: Targeting monocarboxylate
transporters (MCTs) in cancer: How close are we to the clinics?
Semin Cancer Biol. 90:1–14. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Bergersen LH: Lactate transport and
signaling in the brain: Potential therapeutic targets and roles in
body-brain interaction. J Cereb Blood Flow Metab. 35:176–185. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Pan RY, He L, Zhang J, Liu X, Liao Y, Gao
J, Liao Y, Yan Y, Li Q, Zhou X, et al: Positive feedback regulation
of microglial glucose metabolism by histone H4 lysine 12
lactylation in Alzheimer's disease. Cell Metab. 34:634–648.e6.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Zhao SS, Liu J, Wu QC and Zhou XL: Lactate
regulates pathological cardiac hypertrophy via histone lactylation
modification. J Cell Mol Med. 28:e700222024. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Liu S, Yang T, Jiang Q, Zhang L, Shi X,
Liu X and Li X: Lactate and lactylation in sepsis: A comprehensive
review. J Inflamm Res. 17:4405–4417. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Qiao J, Tan Y, Liu H, Yang B, Zhang Q, Liu
Q, Sun W, Li Z, Wang Q, Feng W, et al: Histone H3K18 and ezrin
lactylation promote renal dysfunction in sepsis-associated acute
kidney injury. Adv Sci (Weinh). 11:e23072162024. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Lin X, Lei Y, Pan M, Hu C, Xie B, Wu W, Su
J, Li Y, Tan Y, Wei X, et al: Augmentation of scleral glycolysis
promotes myopia through histone lactylation. Cell Metab.
36:511–525.e7. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Pavlova NN and Thompson CB: The emerging
hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Peng X and Du J: Histone and non-histone
lactylation: Molecular mechanisms, biological functions, diseases,
and therapeutic targets. Mol Biomed. 6:382025. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Shi P, Ma Y and Zhang S: Non-histone
lactylation: Unveiling its functional significance. Front Cell Dev
Biol. 13:15356112025. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Zhang Y and Zhang X: Virus-induced histone
lactylation promotes virus infection in crustacean. Adv Sci
(Weinh). 11:e24010172024. View Article : Google Scholar : PubMed/NCBI
|