Gypenosides attenuate cholesterol‑induced DNA damage by inhibiting the production of reactive oxygen species in human umbilical vein endothelial cells

  • Authors:
    • Yuan Quan
    • Yijun Yang
    • Huixing Wang
    • Bo Shu
    • Qi‑Hai Gong
    • Minzhang Qian
  • View Affiliations

  • Published online on: December 16, 2014     https://doi.org/10.3892/mmr.2014.3095
  • Pages: 2845-2851
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Previous studies have demonstrated that DNA damage induces atherosclerosis and that oxidative stress has an important role in DNA damage. Gypenosides (Gps), the main ingredient of Gynostemma Pentaphylla (Thunb.) Makino, have been recognized as specific antioxidants and have previously been reported to inhibit high‑fat diet‑induced atherosclerosis in rats. However, whether or not Gps attenuate DNA damage through their antioxidant effects remains to be elucidated. The current study was performed to clarify whether or not Gps can inhibit cholesterol‑induced DNA damage through antioxidation. The present study provided new insights into the pharmacological effects of Gps on atherosclerosis. HUVECs were treated with Gps at various concentrations (1, 10 and 100 µg/ml) for 1 h. The protective effects of Gps on cholesterol‑induced DNA damage were determined using immunofluorescence, western blotting, reverse‑transcription quantitative polymerase chain reaction and flow cytometry. Pretreatment with Gps (1, 10 and 100 µg/ml) effectively attenuated cholesterol‑induced DNA damage in HUVECs by inhibiting phosphorylation of H2AX, a member of the histone family. Furthermore, Gps (100 µg/ml) pretreatment inhibited cholesterol‑induced transcription and activity of nicotinamide adenine dinucleotide phosphate‑oxidase 4 and reduced intracellular ROS levels. In conclusion, Gps attenuated cholesterol‑induced DNA damage by inhibiting ROS production in HUVECs, suggesting that the inhibitory effect of Gps on atherogenesis is correlated with the alleviation of DNA damage.

Related Articles

Journal Cover

April-2015
Volume 11 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Quan Y, Yang Y, Wang H, Shu B, Gong QH and Qian M: Gypenosides attenuate cholesterol‑induced DNA damage by inhibiting the production of reactive oxygen species in human umbilical vein endothelial cells. Mol Med Rep 11: 2845-2851, 2015
APA
Quan, Y., Yang, Y., Wang, H., Shu, B., Gong, Q., & Qian, M. (2015). Gypenosides attenuate cholesterol‑induced DNA damage by inhibiting the production of reactive oxygen species in human umbilical vein endothelial cells. Molecular Medicine Reports, 11, 2845-2851. https://doi.org/10.3892/mmr.2014.3095
MLA
Quan, Y., Yang, Y., Wang, H., Shu, B., Gong, Q., Qian, M."Gypenosides attenuate cholesterol‑induced DNA damage by inhibiting the production of reactive oxygen species in human umbilical vein endothelial cells". Molecular Medicine Reports 11.4 (2015): 2845-2851.
Chicago
Quan, Y., Yang, Y., Wang, H., Shu, B., Gong, Q., Qian, M."Gypenosides attenuate cholesterol‑induced DNA damage by inhibiting the production of reactive oxygen species in human umbilical vein endothelial cells". Molecular Medicine Reports 11, no. 4 (2015): 2845-2851. https://doi.org/10.3892/mmr.2014.3095