|
1
|
Felson DT: Clinical practice.
Osteoarthritis of the knee. N Engl J Med. 354:841–848. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Goldring SR and Goldring MB: Changes in
the osteochondral unit during osteoarthritis: Structure, function
and cartilage-bone crosstalk. Nat Rev Rheumatology. 12:632–644.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Urban H and Little CB: The role of fat and
inflammation in the pathogenesis and management of osteoarthritis.
Rheumatology (Oxford). 57(Suppl 4): pp. iv10–iv21. 2018, View Article : Google Scholar
|
|
4
|
Fox AJS, Bedi A and Rodeo SA: The basic
science of articular cartilage: Structure, composition and
function. Sports Health. 1:461–468. 2019.
|
|
5
|
Pearle AD, Warren RF and Rodeo SA: Basic
science of articular cartilage and osteoarthritis. Clin Sports Med.
24:1–12. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Shoulders MD and Raines RT: Collagen
structure and stability. Annu Rev Biochem. 78:929–958. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Aigner T, Zien A, Gehrsitz A, Gebhard PM
and McKenna L: Anabolic and catabolic gene expression pattern
analysis in normal versus osteoarthritic cartilage using
complementary DNA-array technology. Arthritis Rheum. 44:2777–2789.
2001. View Article : Google Scholar
|
|
8
|
Darling EM and Athanasiou KA:
Biomechanical strategies for articular cartilage regeneration. Ann
Biomed Eng. 31:1114–1124. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kevorkian L, Young DA, Darrah C, Donell
ST, Shepstone L, Porter S, Brockbank SMV, Edwards DR, Parker AE and
Clark IM: Expression profiling of metalloproteinases and their
inhibitors in cartilage. Arthritis Rheum. 50:131–141. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Little CB, Barai A, Burkhardt D, Smith SM,
Fosang AJ, Werb Z, Shah M and Thompson EW: Matrix
metalloproteinase-13 deficient mice are resistant to osteoarthritic
cartilage erosion but not chondrocyte hypertrophy or osteophyte
development. Arthritis Rheum. 60:3723–3733. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Latourte A, Cherifi C, Maillet J, Ea HK,
Bouaziz W, Brentano TF, Solal MC, Hay E and Richette P: Systemic
inhibition of IL-6/Stat3 signaling protects against experimental
osteoarthritis. Ann Rheum Dis. 76:748–755. 2017. View Article : Google Scholar
|
|
12
|
Jobling AI, Nguyen M, Gentle A and McBrien
NA: Isoform-specific changes in scleral transforming growth
factor-β expression and the regulation of collagen synthesis during
myopia progression. J Biol Chem. 279:18121–18126. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Javelaud D and Mauviel A: Mammalian
transforming growth factor-betas: Smad signaling and
physio-pathological roles. Int J Biochem Cell Biol. 36:1161–1165.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Itoh S, Itoh F, Goumans MJ and Dijke PT:
Signaling of transforming growth factor-b family members through
Smad proteins. Eur J Biochem. 267:6954–6967. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Finnson KW, Parker WL, Dijke PT, Thorikay
M and Philip A: ALK1 Opposes ALK5/Smad3 signaling and expression of
extracellular matrix components in human chondrocytes. J Bone Miner
Res. 23:896–906. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Blaney Davidson EN, Remst DF, Vitters EL,
van Beuningen HM, Blom AB, Goumans MJ, van den Berg WB and van der
Kraan PM: Increase in ALK1/ALK5 Ratio as a cause for elevated
MMP-13 expression in osteoarthritis in humans and mice. J Immunol.
182:7937–7945. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Remst DF, Blaney Davidson EN, Vitters EL,
Bank RA, van den Berg WB and van der Kraan PM: TGF-β induces Lysyl
hydroxylase 2b in human synovial osteoarthritic fibroblasts through
ALK5 signaling. Cell Tissue Res. 355:163–171. 2014. View Article : Google Scholar
|
|
18
|
Barry F, Boynton RE, Liu B and Murphy M:
Chondrogenic differentiation of mesenchymal Stem cells from bone
marrow: Differentiation-dependent gene expression of matrix
components. Exp Cell Res. 268:189–200. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Enker ND and Krieglstein K: Targeted
mutations of transforming growth factor-beta genes reveal important
roles in mouse development and adult homeostasis. Eur J Biochem.
267:6982–6988. 2000. View Article : Google Scholar
|
|
20
|
van Beuningen HM, Glansbeek HL, van der
Kraan PM and van den Berg WB: Osteoarthritis-like changes in the
murine knee joint resulting from intra-articular transforming
growth factor-beta injections. Osteoarthritis Cartilage. 8:25–33.
2000. View Article : Google Scholar
|
|
21
|
Zhen G, Wen C, Jia XF, Li Y, Crane JL,
Mears SC, Askin FB, Frassica FJ, Chang W, Yao J, et al: Inhibition
of TGF-β signaling in mesenchymal stem cells of subchondral bone
attenuates osteoarthritis. Nat Med. 19:704–714. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Bakker AC, van de Loo FA, van Beuningen
HM, Sime P, van Lent PL, van der Kraan PM, Richards CD and van den
Berg WB: Overexpression of active TGF-beta-1 in the murine knee
joint: Evidence for synovial-layer-dependent Chondro-osteophyte
formation. Osteoarthritis Cartilage. 9:128–136. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Suarez MP, Oreja MTC, Calaza M, Reino JG
and Gonzalez A: Differential upregulation of the three transforming
growth factor beta isoforms in human osteoarthritic cartilage. Ann
Rheum Dis. 68:568–571. 2009. View Article : Google Scholar
|
|
24
|
Wu J, Liu W, Bemis A, Wang E, Qiu YC,
Morris EA, Flannery CR and Yang Z: Comparative proteomic
characterization of articular cartilage tissue from normal donors
and patients with osteoarthritis. Arthritis Rheum. 56:3675–3684.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Verdier MP, Seite S, Guntzer K, Pujol JP
and Boumediene K: Immunohistochemical analysis of transforming
growth factor beta isoforms and their receptors in human cartilage
from normal and osteoarthritic femoral heads. Rheumatol Int.
25:118–124. 2005. View Article : Google Scholar
|
|
26
|
Lee WH, Song SU, Hwang TS, Yi Y, Oh IS,
Lee JY, Choi KB, Choi MS and Kim S: Regeneration of hyaline
cartilage by cell-mediated gene therapy using transforming growth
factor beta1-producing fibroblasts. Hum Gene Ther. 12:1805–1813.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Song SU, Cha YD, Han JU, Oh IS, Choi KB,
Yi Y, Hyun JP, Lee HY, Chi GF, Lim CL, et al: Hyaline cartilage
regeneration using mixed human chondrocytes and transforming growth
factor-beta1-producing chondrocytes. Tissue Eng. 11:1516–1526.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Guo X, Zheng Q, Yang S, Shao Z, Yuan Q,
Pan Z, Tang S, Liu K and Quan D: Repair of full-thickness articular
cartilage defects by cultured mesenchymal stem cells transfected
with the transforming growth factor beta1 gene. Biomed Mater.
1:206–215. 2006. View Article : Google Scholar
|
|
29
|
Zhang P, Zhong ZH, Yu HT and Liu B:
Exogenous expression of IL-1Ra and TGF-β1 promotes in vivo repair
in experimental rabbit osteoarthritis. Scand J Rheumatol.
44:404–411. 2015. View Article : Google Scholar
|
|
30
|
Eshghi EA, Liu M, Harper PE, Doré J,
Martin G, Furey A, Green R, Rahman P and Zhai G: Overexpression of
MMP13 in human osteoarthritic cartilage is associated with the
SMAD-independent TGF-β signaling pathway. Arthritis Res Ther.
17:264–272. 2015. View Article : Google Scholar
|
|
31
|
Xie J, Zhang D and Lin Y: Anterior
Cruciate ligament transection-induced cellular and extracellular
events in menisci: Implications for osteoarthritis. Am J Sports
Med. 46:1185–1198. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kudipudi PK, Galuska SP, Dietze R, Bobis
GS, Loveland KL and Konrad L: Betaglycan (TβRIII) is a key factor
in TGF-β2 signaling in prepubertal rat Sertoli cells. Int J Mol
Sci. 20:6214–6232. 2019. View Article : Google Scholar
|
|
33
|
Sandell LJ and Aigner T: Articular
cartilage and changes in arthritis. An introduction: Cell biology
of osteoarthritis. Arthritis Res. 3:107–113. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Xie J, Fu N, Cai LY, Gong TY, Li GY, Peng
Q and Ca XX: The effects of interleukin-1β in modulating
osteoclast-conditioned medium's influence on gelatinases in
chondrocytes through mitogen-activated protein kinases. Int J Oral
Sci. 7:220–231. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Tchetina EV, Antoniou J, Tanzer M, Zukor
DJ and Poole AR: Transforming growth factor-beta2 suppresses
collagen cleavage in cultured human osteoarthritic cartilage,
reduces expression of genes associated with chondrocyte hypertrophy
and degradation, and increases prostaglandin E(2) production. Am J
Pathol. 168:132–1340. 2006. View Article : Google Scholar
|
|
36
|
Mrugala D, Bony C, Neves N, Caillot L,
Fabre S, Moukoko D, Jorgensen C and Noe D: Phenotypic and
functional characterization of ovine mesenchymal stem cells:
Application to a cartilage defect model. Ann Rheum Dis. 67:288–295.
2008. View Article : Google Scholar
|
|
37
|
Tang QO, Shakib K, Heliotis M and Tsiridis
E, Mantalaris A, Ripamonti A and Tsiridis E: TGF-beta3: A potential
biological therapy for enhancing chondrogenesis. Expert Opin Biol
Ther. 9:689–701. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Mehlhorn A, Schmal H, Kaiser S, Lepski G,
Finkenzeller G, Stark GB and Südkamp NP: Mesenchymal stem cells
maintain TGF-beta-mediated chondrogenic phenotype in alginate bead
culture. Tissue Eng. 12:1393–1403. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Bian L, Zhai DY, Tous E, Rai R, Mauck RL
and Burdick JA: Enhanced MSC chondrogenesis following delivery of
TGF-β3 from alginate microspheres within hyaluronic acid hydrogels
in vitro and in vivo. Biomaterials. 32:6425–6434. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Choi SJ, Na K, Kim S, Woo DG, Sun BK,
Chung HM and Park KH: Combination of ascorbate and growth factor
(TGF beta-3) in thermo-reversible hydrogel constructs embedded with
rabbit chondrocytes for neocartilage formation. J Biomed Mater Res
A. 83:897–905. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Deng ZH, Li YS, Gao X, Lei GH and Huard J:
Bone morphogenetic proteins for articular cartilage regeneration.
Osteoarthritis Cartilage. 26:1153–1161. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hayashi M, Muneta T, Ju YJ, Mochizuki T
and Sekiya I: Weekly intra-articular injections of bone
morphogenetic protein-7 inhibits osteoarthritis progression.
Arthritis Res Ther. 10:R1182008. View
Article : Google Scholar : PubMed/NCBI
|
|
43
|
Hino K, Saito A, Kido M, Kanemoto S, Asada
R, Takai T, Cui M, Cui X and Imaizumi K: Master regulator for
chondrogenesis, Sox9, regulates transcriptional activation of the
endoplasmic reticulum stress transducer BBF2H7/CREB3L2 in
chondrocytes. J Biol Chem. 289:13810–13820. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Tan AR and Hung CT: Concise review:
Mesenchymal stem cells for functional cartilage tissue engineering:
Taking cues from chondrocyte-based constructs. Stem Cells Transl
Med. 6:1295–1303. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Gimble JM and Guilak F: Adipose-derived
adult stem cells: Isolation, characterization and differentiation
potential. Cytotherapy. 5:362–369. 2003. View Article : Google Scholar
|
|
46
|
Goldring MB: Immortalization of human
articular chondrocytes for generation of stable, differentiated
cell lines. Methods Mol Med. 100:23–36. 2004.PubMed/NCBI
|
|
47
|
L PK, Kandoi S, Misra R, Vijayalakshmi S,
Rajagopal K and Verma RS: The mesenchymal stem cell secretome: A
new paradigm towards cell-free therapeutic mode in regenerative
medicine. Cytokine Growth Factor Rev. 46:1–9. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Cheng L, Zhang K, Wu S, Cui M and Xu T:
Focus on mesenchymal stem cell-derived exosomes: Opportunities and
challenges in cell-free therapy. Stem Cells Int. 2017:63052952017.
View Article : Google Scholar
|
|
49
|
Lai RC, Arslan F, Lee MM, Sze NS, Choo A,
Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM, et al:
Exosome secreted by MSC reduces myocardial ischemia/reperfusion
injury. Stem Cell Res. 4:214–222. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kanakaris NK and Giannoudis PV: Clinical
applications of bone morphogenetic proteins: Current evidence. J
Surg Orthop Adv. 17:133–146. 2008.PubMed/NCBI
|
|
51
|
Gentile P, Piccinno MS and Calabrese C:
Characteristics and potentiality of human adipose-derived stem
cells (hASCs) obtained from enzymatic digestion of fat graft.
Cells. 8:2822019. View Article : Google Scholar :
|
|
52
|
Galateanu B, Dinescu S, Cimpean A,
Dinischiotu A and Costache M: Modulation of adipogenic conditions
for prospective use of hADSCs in adipose tissue engineering. Int J
Mol Sci. 13:15881–15900. 2012. View Article : Google Scholar
|
|
53
|
Hsiao ST, Asgari A, Lokmic Z, Sinclair R,
Dusting GJ, Lim SY and Dilley RJ: Comparative analysis of paracrine
factor expression in human adult mesenchymal stem cells derived
from bone marrow, adipose and dermal tissue. Stem Cells Dev.
21:2189–2203. 2012. View Article : Google Scholar
|
|
54
|
Shukla L, Yuan Y, Shayan R, Greening DW
and Karnezis T: Fat therapeutics: The clinical capacity of
adipose-derived stem cells and exosomes for human disease and
tissue regeneration. Front Pharmacol. 11:1582020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Hong P, Yang H, Wu Y, Li K and Tang Z: The
functions and clinical application potential of exosomes derived
from adipose mesenchymal stem cells: A comprehensive review. Stem
Cell Res Ther. 10:2422019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wong DE, Banyard DA, Santos PJF, Sayadic
LR, Evans GR and Widgerow AD: Adipose-derived stem cell
extracellular vesicles: A systematic review. J Plast Reconstr
Aesthet Surg. 72:1207–1218. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Dinescu S, Hermenean A and Costache M:
Human adipose-derived stem cells for tissue engineering approaches:
Current challenges and perspectives. Stem Cells in Clinical
Practice and Tissue Engineering. InTech. Chapter-14. 2018,
View Article : Google Scholar
|
|
58
|
Spasovski D, Spasovski V, Baščarević Z and
Stojiljković M: Intra-articular injection of autologous
adipose-derived mesenchymal stem cells in the treatment of knee
osteoarthritis. J Gene Med. 20:e30022018. View Article : Google Scholar
|
|
59
|
Maumus M, Manferdini C, Toupet K,
Peyrafitte JA, Ferreira R, Facchini A, Gabusi E, Bourin P,
Jorgensen C, Lisignoli G and Noël D: Adipose mesenchymal stem cells
protect chondrocytes from degeneration associated with
osteoarthritis. Stem Cell Res. 11:834–844. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Qiu H, Liu S, Wu K, Zhao R, Cao L and Wang
H: Prospective application of exosomes derived from adipose-derived
stem cells in skin wound healing: A review. J Cosmet Dermatol.
19:574–581. 2020. View Article : Google Scholar
|
|
61
|
Kowal J, Tkach M and Thery C: Biogenesis
and secretion of exosomes. Curr Opin Cell Biol. 29:116–125. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Minciacchi RV, Freeman MR and Vizio DD:
Extracellular vesicles in cancer: Exosomes, microvesicles and the
emerging role of large oncosomes. Semin Cell Dev Biol. 40:41–51.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Choi DS, Kim DK, Kim YK and Gho YS:
Proteomics, transcriptomics and lipidomics of exosomes and
ectosomes. Proteomics. 13:1554–1571. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Park SJ, Kim JM, Kim J, Hur J, Park S, Kim
K, Shin HJ and Chwae YJ: Molecular mechanisms of biogenesis of
apoptotic exosome-like vesicles and their roles as
damage-associated molecular patterns. Proc Natl Acad Sci USA.
115:E11721–E11730. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Weichand B, Weis N, Weigert A, Grossmann
N, Levkau B and Brüne B: Apoptotic cells enhance
sphingosine-1-phosphate receptor 1 dependent macrophage migration.
Eur J Immunol. 43:3306–3313. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kakarla R, Hur J, Kim YJ, Kim J and Chwae
YJ: Apoptotic cell-derived exosomes: Messages from dying cells.
Expe Mol Med. 52:1–6. 2020. View Article : Google Scholar
|
|
67
|
Tao SC, Yuan T, Zhang YL, Yin WJ, Guo SC
and Zhang CQ: Exosomes derived from miR-140-5p-overexpressing human
synovial mesenchymal stem cells enhance cartilage tissue
regeneration and prevent osteoarthritis of the knee in a rat model.
Theranostics. 7:180–1895. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Vonk LA, van Dooremalen SFJ, Liv N,
Klumperman J, Coffe PJ, Saris DBF and Lorenowicz MJ: Mesenchymal
stromal/stem cell-derived extracellular vesicles promote human
cartilage regeneration in vitro. Theranostics. 8:906–920. 2018.
View Article : Google Scholar :
|
|
69
|
Cosenza S, Ruiz M, Toupet K, Jorgensen C
and Noël D: Mesenchymal stem cells derived exosomes and
microparticles protect cartilage and bone from degradation in
osteoarthritis. Sci Rep. 7:162142017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wang Y, Yu D, Liu Z, Zhou F, Dai J, Wu B,
Zhou J, Heng BC, Zou XH, Ouyang H and Liu H: Exosomes from
embryonic mesenchymal stem cells alleviate osteoarthritis through
balancing synthesis and degradation of cartilage extracellular
matrix. Stem Cell Res. 8:1892017.
|
|
71
|
Jin Z, Ren J and Qi S: Human bone
mesenchymal stem cells-derived exosomes overexpressing
microRNA-26a-5p alleviate osteoarthritis via down-regulation of
PTGS2. Int Immunopharmacol. 78:1059462020. View Article : Google Scholar
|
|
72
|
Mao G, Zhang Z, Hu S, Zhang Z, Chang Z,
Huang Z, Liao W and Kang Y: Exosomes derived from
miR-92a-3poverexpressing human mesenchymal stem cells enhance
chondrogenesis and suppress cartilage degradation via targeting
WNT5A. Stem Cell Res Ther. 9:2472018. View Article : Google Scholar
|
|
73
|
Tofiño-Vian M, Guillén MI, Pérez del Caz
MD, Silvestre A and Alcaraz MJ: Microvesicles from human adipose
tissue-derived mesenchymal stem cells as a new protective strategy
in osteoarthritic chondrocytes. Cell Physiol Biochem. 47:11–25.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Tofiño-Vian M, Guillén MI, Pérez del Caz
MD, Castejón MA and Alcaraz MJ: Extracellular vesicles from
adipose-derived mesenchymal stem cells downregulate senescence
features in osteoarthritic osteoblasts. Oxid Med Cell Longev.
2017:71975982017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Woo CH, Kim HK, Jung GY, Jung YJ, Lee KS,
Yun YE, Han J, Lee J, Kim WS, Choi JS, et al: Small extracellular
vesicles from human adipose-derived stem cells attenuate cartilage
degeneration. J Extracell Vesicles. 9:17352492020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhao C, Chen JY, Peng WM, Yuan B, Bi Q and
Xu YJ: Exosomes from adipose-derived stem cells promote
chondrogenesis and suppress inflammation by upregulating miR-145
and miR-221. Mol Med Rep. 21:1881–1889. 2020.PubMed/NCBI
|
|
77
|
Stepien A, Dabrowska NL, Maciagowska M,
Macoch RP, Zolocinska A, Mazur S, Siennicka K, Frankowska E,
Kidzinski R, Chalimoniuk M and Pojda Z: Clinical application of
autologous adipose stem cells in patients with multiple sclerosis:
Preliminary results. Mediators Inflamm. Sep 28–2016.Epub ahead of
print. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Kuriyan AE, Albini TA, Townsend JH,
Rodriguez M, Pandya HK, Leonard RE II, Parrott MB, Rosenfeld PJ,
Flynn HW Jr and Goldberg JL: Vision loss after intravitreal
injection of autologous 'stem cells' for AMD. N Engl J Med.
376:1047–1053. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Vériter S, André W, Aouassar N, Poirel HA,
Lafosse A, Docquier PL and Dufrane D: Human adipose-derived
mesenchymal stem cells in cell therapy: Safety and feasibility in
different 'Hospital Exemption' clinical applications. PLoS One.
10:e01395662015. View Article : Google Scholar
|
|
80
|
Atat OE, Antonios D, Hilal G, Hokayem N,
Abou-Ghoch J, Hashim H, Serhal R, Hebbo C, Moussa M and Alaaeddine
N: An evaluation of the stemness, paracrine and tumorigenic
characteristics of highly expanded, minimally passaged
adipose-derived stem cells. PLoS One. 11:e01623322016. View Article : Google Scholar
|
|
81
|
Tátrai P, Szepesi Á, Matula Z, Szigeti A,
Buchan G, Mádi A, Uher F and Német K: Combined introduction of
Bmi-1 and hTERT immortalizes human adipose tissue-derived stromal
cells with low risk of transformation. Biochem Biophys Res Commun.
422:28–35. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhang Y, Liu J, Mo Y, Chen Z, Chen T, Li
Y, Zheng Y, Deng S, Xu X, Chen H, et al: Immortalized mesenchymal
stem cells: A safe cell source for cellular or cell membrane-based
treatment of glioma. Southern Medical University; 2021
|
|
83
|
Vater C, Kasten P and Stiehler M: Culture
media for the differentiation of mesenchymal stromal cells. Acta
Biomater. 7:463–477. 2011. View Article : Google Scholar
|
|
84
|
Pelttari K, Winter A, Steck E, Goetzke K,
Hennig T, Ochs BG, Aigner T and Richter W: Premature induction of
hypertrophy during in vitro chondrogenesis of human mesenchymal
stem cells correlates with calcification and vascular invasion
after ectopic transplantation in SCID mice. Arthritis Rheum.
54:3254–3266. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Puetzer JL, Petitte JN and Loboa EG:
Comparative review of growth factors for induction of
three-dimensional in vitro chondrogenesis in human mesenchymal stem
cells isolated from bone marrow and adipose tissue. Tissue Eng Part
B Rev. 16:435–444. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Freyria AM and Mallein-Gerin F:
Chondrocytes or adult stem cells for cartilage repair: The
indisputable role of growth factors. Injury. 3:259–265. 2012.
View Article : Google Scholar
|
|
87
|
Santo VE, Gomes ME, Mano JF and Reis RL:
Controlled release strategies for bone, cartilage and osteochondral
engineering-part II: Challenges on the evolution from single to
multiple bioactive factor delivery. Tissue Eng Part B Rev.
19:327–352. 2013. View Article : Google Scholar :
|
|
88
|
Afizah H, Yang Z, Hui JH, Ouyang HW and
Lee EH: A comparison between the chondrogenic potential of human
bone marrow stem cells (BMSCs) and adipose-derived stem cells
(ADSCs) taken from the same donors. Tissue Eng. 13:659–666. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Ude CC, Shamsul BS, Ng MH, Chen HC, Ohnmar
H, Amaramalar SN, Rizal AR, Johan A, Norhamdan MY, Azizi M, et al:
Long-term evaluation of osteoarthritis sheep knee, treated with
TGF-β3 and BMP-6 induced multipotent stem cells. Exp Gerontol.
104:43–51. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Lu CH, Yeh TY, Yeh CL, Fang YH, Sung LY,
Lin SY, Yen TC, Chang YH and Hu YC: Regenerating cartilages by
engineered ASCs: Prolonged TGF-β3/BMP-6 expression improved
articular cartilage formation and restored zonal structure. Mol
Ther. 22:186–1895. 2014. View Article : Google Scholar
|
|
91
|
Choi S, Cho TJ, Kwon SK, Lee G and Cho J:
Chondrogenesis of periodontal ligament stem cells by transforming
growth factor-β3 and bone morphogenetic protein-6 in a normal
healthy impacted third molar. Int J Oral Sci. 5:7–13. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Yoo KH, Thapa N, Kim BJ, Lee JO, Jang YN,
Chwae YJ and Kim J: Possibility of exosome-based coronavirus
disease 2019 vaccine (Review). Mol Med Rep. 25:262022. View Article : Google Scholar
|