Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
May-2022 Volume 49 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2022 Volume 49 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Transforming growth factor‑β family and stem cell‑derived exosome therapeutic treatment in osteoarthritis (Review)

  • Authors:
    • Kwang Ho Yoo
    • Nikita Thapa
    • Yong Joon Chwae
    • Seung Hyun Yoon
    • Beom Joon Kim
    • Jung Ok Lee
    • You Na Jang
    • Jaeyoung Kim
  • View Affiliations / Copyright

    Affiliations: Department of Dermatology, Chung‑Ang University College of Medicine, Seoul 06973, Republic of Korea, CK‑Exogene, Inc., Seongnam, Gyeonggi‑do 13201, Republic of Korea, Department of Microbiology, Ajou University School of Medicine, Suwon, Gyeonggi‑do 16499, Republic of Korea, Department of Physical Medicine and Rehabilitation, Ajou University School of Medicine, Suwon, Gyeonggi‑do 16499, Republic of Korea
    Copyright: © Yoo et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
  • Article Number: 62
    |
    Published online on: March 10, 2022
       https://doi.org/10.3892/ijmm.2022.5118
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Osteoarthritis (OA), although extensively researched, still lacks an effective and safe treatment. The only current treatment option available for advanced OA is joint replacement surgery. This surgery may pose the risks of persistent pain, surgical complications and limited implant lifespan. Transforming growth factor (TGF)‑β has a crucial role in multiple cellular processes such as cell proliferation. Any deterioration in TGF‑β signaling pathways can have an immense impact on OA. Owing to the crucial role of TGF‑β in cartilage homeostasis, targeting it could be an alternative therapeutic approach. Additionally, stem cell‑based therapy has recently emerged as an effective treatment strategy that could replace surgery. A number of recent findings suggest that the tissue regeneration effect of stem cells is attributed to the paracrine secretion of anti‑inflammatory and chondroprotective mediators or trophic factors, particularly nanosized extracellular vesicles (i.e., exosomes). Literature searches were performed in the MEDLINE, EMBASE, Cochrane Library and PubMed electronic database for relevant articles published before September 2021. Multiple investigators have confirmed TGF‑β3 as a promising candidate which has the chondrogenic potential to repair articular cartilage degeneration. Combining TGF‑β3 with bone morphogenetic proteins‑6, which has synergistic effect on chondrogenesis, with an efficient platform such as exosomes, which themselves possess a chondroprotective function, offers an innovative and more efficient approach to treat injured cartilage. In addition, multiple findings stating the role of exosomes in chondroprotection has also verified a similar fact showing exosomes may be a more favorable choice than the source itself. In the present review, the importance of TGF‑β family in OA and the possibility of therapeutic treatment using stem cell‑derived exosomes are described.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Felson DT: Clinical practice. Osteoarthritis of the knee. N Engl J Med. 354:841–848. 2006. View Article : Google Scholar : PubMed/NCBI

2 

Goldring SR and Goldring MB: Changes in the osteochondral unit during osteoarthritis: Structure, function and cartilage-bone crosstalk. Nat Rev Rheumatology. 12:632–644. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Urban H and Little CB: The role of fat and inflammation in the pathogenesis and management of osteoarthritis. Rheumatology (Oxford). 57(Suppl 4): pp. iv10–iv21. 2018, View Article : Google Scholar

4 

Fox AJS, Bedi A and Rodeo SA: The basic science of articular cartilage: Structure, composition and function. Sports Health. 1:461–468. 2019.

5 

Pearle AD, Warren RF and Rodeo SA: Basic science of articular cartilage and osteoarthritis. Clin Sports Med. 24:1–12. 2005. View Article : Google Scholar : PubMed/NCBI

6 

Shoulders MD and Raines RT: Collagen structure and stability. Annu Rev Biochem. 78:929–958. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Aigner T, Zien A, Gehrsitz A, Gebhard PM and McKenna L: Anabolic and catabolic gene expression pattern analysis in normal versus osteoarthritic cartilage using complementary DNA-array technology. Arthritis Rheum. 44:2777–2789. 2001. View Article : Google Scholar

8 

Darling EM and Athanasiou KA: Biomechanical strategies for articular cartilage regeneration. Ann Biomed Eng. 31:1114–1124. 2003. View Article : Google Scholar : PubMed/NCBI

9 

Kevorkian L, Young DA, Darrah C, Donell ST, Shepstone L, Porter S, Brockbank SMV, Edwards DR, Parker AE and Clark IM: Expression profiling of metalloproteinases and their inhibitors in cartilage. Arthritis Rheum. 50:131–141. 2004. View Article : Google Scholar : PubMed/NCBI

10 

Little CB, Barai A, Burkhardt D, Smith SM, Fosang AJ, Werb Z, Shah M and Thompson EW: Matrix metalloproteinase-13 deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum. 60:3723–3733. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Latourte A, Cherifi C, Maillet J, Ea HK, Bouaziz W, Brentano TF, Solal MC, Hay E and Richette P: Systemic inhibition of IL-6/Stat3 signaling protects against experimental osteoarthritis. Ann Rheum Dis. 76:748–755. 2017. View Article : Google Scholar

12 

Jobling AI, Nguyen M, Gentle A and McBrien NA: Isoform-specific changes in scleral transforming growth factor-β expression and the regulation of collagen synthesis during myopia progression. J Biol Chem. 279:18121–18126. 2004. View Article : Google Scholar : PubMed/NCBI

13 

Javelaud D and Mauviel A: Mammalian transforming growth factor-betas: Smad signaling and physio-pathological roles. Int J Biochem Cell Biol. 36:1161–1165. 2004. View Article : Google Scholar : PubMed/NCBI

14 

Itoh S, Itoh F, Goumans MJ and Dijke PT: Signaling of transforming growth factor-b family members through Smad proteins. Eur J Biochem. 267:6954–6967. 2000. View Article : Google Scholar : PubMed/NCBI

15 

Finnson KW, Parker WL, Dijke PT, Thorikay M and Philip A: ALK1 Opposes ALK5/Smad3 signaling and expression of extracellular matrix components in human chondrocytes. J Bone Miner Res. 23:896–906. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Blaney Davidson EN, Remst DF, Vitters EL, van Beuningen HM, Blom AB, Goumans MJ, van den Berg WB and van der Kraan PM: Increase in ALK1/ALK5 Ratio as a cause for elevated MMP-13 expression in osteoarthritis in humans and mice. J Immunol. 182:7937–7945. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Remst DF, Blaney Davidson EN, Vitters EL, Bank RA, van den Berg WB and van der Kraan PM: TGF-β induces Lysyl hydroxylase 2b in human synovial osteoarthritic fibroblasts through ALK5 signaling. Cell Tissue Res. 355:163–171. 2014. View Article : Google Scholar

18 

Barry F, Boynton RE, Liu B and Murphy M: Chondrogenic differentiation of mesenchymal Stem cells from bone marrow: Differentiation-dependent gene expression of matrix components. Exp Cell Res. 268:189–200. 2001. View Article : Google Scholar : PubMed/NCBI

19 

Enker ND and Krieglstein K: Targeted mutations of transforming growth factor-beta genes reveal important roles in mouse development and adult homeostasis. Eur J Biochem. 267:6982–6988. 2000. View Article : Google Scholar

20 

van Beuningen HM, Glansbeek HL, van der Kraan PM and van den Berg WB: Osteoarthritis-like changes in the murine knee joint resulting from intra-articular transforming growth factor-beta injections. Osteoarthritis Cartilage. 8:25–33. 2000. View Article : Google Scholar

21 

Zhen G, Wen C, Jia XF, Li Y, Crane JL, Mears SC, Askin FB, Frassica FJ, Chang W, Yao J, et al: Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med. 19:704–714. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Bakker AC, van de Loo FA, van Beuningen HM, Sime P, van Lent PL, van der Kraan PM, Richards CD and van den Berg WB: Overexpression of active TGF-beta-1 in the murine knee joint: Evidence for synovial-layer-dependent Chondro-osteophyte formation. Osteoarthritis Cartilage. 9:128–136. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Suarez MP, Oreja MTC, Calaza M, Reino JG and Gonzalez A: Differential upregulation of the three transforming growth factor beta isoforms in human osteoarthritic cartilage. Ann Rheum Dis. 68:568–571. 2009. View Article : Google Scholar

24 

Wu J, Liu W, Bemis A, Wang E, Qiu YC, Morris EA, Flannery CR and Yang Z: Comparative proteomic characterization of articular cartilage tissue from normal donors and patients with osteoarthritis. Arthritis Rheum. 56:3675–3684. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Verdier MP, Seite S, Guntzer K, Pujol JP and Boumediene K: Immunohistochemical analysis of transforming growth factor beta isoforms and their receptors in human cartilage from normal and osteoarthritic femoral heads. Rheumatol Int. 25:118–124. 2005. View Article : Google Scholar

26 

Lee WH, Song SU, Hwang TS, Yi Y, Oh IS, Lee JY, Choi KB, Choi MS and Kim S: Regeneration of hyaline cartilage by cell-mediated gene therapy using transforming growth factor beta1-producing fibroblasts. Hum Gene Ther. 12:1805–1813. 2001. View Article : Google Scholar : PubMed/NCBI

27 

Song SU, Cha YD, Han JU, Oh IS, Choi KB, Yi Y, Hyun JP, Lee HY, Chi GF, Lim CL, et al: Hyaline cartilage regeneration using mixed human chondrocytes and transforming growth factor-beta1-producing chondrocytes. Tissue Eng. 11:1516–1526. 2005. View Article : Google Scholar : PubMed/NCBI

28 

Guo X, Zheng Q, Yang S, Shao Z, Yuan Q, Pan Z, Tang S, Liu K and Quan D: Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor beta1 gene. Biomed Mater. 1:206–215. 2006. View Article : Google Scholar

29 

Zhang P, Zhong ZH, Yu HT and Liu B: Exogenous expression of IL-1Ra and TGF-β1 promotes in vivo repair in experimental rabbit osteoarthritis. Scand J Rheumatol. 44:404–411. 2015. View Article : Google Scholar

30 

Eshghi EA, Liu M, Harper PE, Doré J, Martin G, Furey A, Green R, Rahman P and Zhai G: Overexpression of MMP13 in human osteoarthritic cartilage is associated with the SMAD-independent TGF-β signaling pathway. Arthritis Res Ther. 17:264–272. 2015. View Article : Google Scholar

31 

Xie J, Zhang D and Lin Y: Anterior Cruciate ligament transection-induced cellular and extracellular events in menisci: Implications for osteoarthritis. Am J Sports Med. 46:1185–1198. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Kudipudi PK, Galuska SP, Dietze R, Bobis GS, Loveland KL and Konrad L: Betaglycan (TβRIII) is a key factor in TGF-β2 signaling in prepubertal rat Sertoli cells. Int J Mol Sci. 20:6214–6232. 2019. View Article : Google Scholar

33 

Sandell LJ and Aigner T: Articular cartilage and changes in arthritis. An introduction: Cell biology of osteoarthritis. Arthritis Res. 3:107–113. 2001. View Article : Google Scholar : PubMed/NCBI

34 

Xie J, Fu N, Cai LY, Gong TY, Li GY, Peng Q and Ca XX: The effects of interleukin-1β in modulating osteoclast-conditioned medium's influence on gelatinases in chondrocytes through mitogen-activated protein kinases. Int J Oral Sci. 7:220–231. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Tchetina EV, Antoniou J, Tanzer M, Zukor DJ and Poole AR: Transforming growth factor-beta2 suppresses collagen cleavage in cultured human osteoarthritic cartilage, reduces expression of genes associated with chondrocyte hypertrophy and degradation, and increases prostaglandin E(2) production. Am J Pathol. 168:132–1340. 2006. View Article : Google Scholar

36 

Mrugala D, Bony C, Neves N, Caillot L, Fabre S, Moukoko D, Jorgensen C and Noe D: Phenotypic and functional characterization of ovine mesenchymal stem cells: Application to a cartilage defect model. Ann Rheum Dis. 67:288–295. 2008. View Article : Google Scholar

37 

Tang QO, Shakib K, Heliotis M and Tsiridis E, Mantalaris A, Ripamonti A and Tsiridis E: TGF-beta3: A potential biological therapy for enhancing chondrogenesis. Expert Opin Biol Ther. 9:689–701. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Mehlhorn A, Schmal H, Kaiser S, Lepski G, Finkenzeller G, Stark GB and Südkamp NP: Mesenchymal stem cells maintain TGF-beta-mediated chondrogenic phenotype in alginate bead culture. Tissue Eng. 12:1393–1403. 2006. View Article : Google Scholar : PubMed/NCBI

39 

Bian L, Zhai DY, Tous E, Rai R, Mauck RL and Burdick JA: Enhanced MSC chondrogenesis following delivery of TGF-β3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo. Biomaterials. 32:6425–6434. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Choi SJ, Na K, Kim S, Woo DG, Sun BK, Chung HM and Park KH: Combination of ascorbate and growth factor (TGF beta-3) in thermo-reversible hydrogel constructs embedded with rabbit chondrocytes for neocartilage formation. J Biomed Mater Res A. 83:897–905. 2007. View Article : Google Scholar : PubMed/NCBI

41 

Deng ZH, Li YS, Gao X, Lei GH and Huard J: Bone morphogenetic proteins for articular cartilage regeneration. Osteoarthritis Cartilage. 26:1153–1161. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Hayashi M, Muneta T, Ju YJ, Mochizuki T and Sekiya I: Weekly intra-articular injections of bone morphogenetic protein-7 inhibits osteoarthritis progression. Arthritis Res Ther. 10:R1182008. View Article : Google Scholar : PubMed/NCBI

43 

Hino K, Saito A, Kido M, Kanemoto S, Asada R, Takai T, Cui M, Cui X and Imaizumi K: Master regulator for chondrogenesis, Sox9, regulates transcriptional activation of the endoplasmic reticulum stress transducer BBF2H7/CREB3L2 in chondrocytes. J Biol Chem. 289:13810–13820. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Tan AR and Hung CT: Concise review: Mesenchymal stem cells for functional cartilage tissue engineering: Taking cues from chondrocyte-based constructs. Stem Cells Transl Med. 6:1295–1303. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Gimble JM and Guilak F: Adipose-derived adult stem cells: Isolation, characterization and differentiation potential. Cytotherapy. 5:362–369. 2003. View Article : Google Scholar

46 

Goldring MB: Immortalization of human articular chondrocytes for generation of stable, differentiated cell lines. Methods Mol Med. 100:23–36. 2004.PubMed/NCBI

47 

L PK, Kandoi S, Misra R, Vijayalakshmi S, Rajagopal K and Verma RS: The mesenchymal stem cell secretome: A new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev. 46:1–9. 2019. View Article : Google Scholar : PubMed/NCBI

48 

Cheng L, Zhang K, Wu S, Cui M and Xu T: Focus on mesenchymal stem cell-derived exosomes: Opportunities and challenges in cell-free therapy. Stem Cells Int. 2017:63052952017. View Article : Google Scholar

49 

Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM, et al: Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 4:214–222. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Kanakaris NK and Giannoudis PV: Clinical applications of bone morphogenetic proteins: Current evidence. J Surg Orthop Adv. 17:133–146. 2008.PubMed/NCBI

51 

Gentile P, Piccinno MS and Calabrese C: Characteristics and potentiality of human adipose-derived stem cells (hASCs) obtained from enzymatic digestion of fat graft. Cells. 8:2822019. View Article : Google Scholar :

52 

Galateanu B, Dinescu S, Cimpean A, Dinischiotu A and Costache M: Modulation of adipogenic conditions for prospective use of hADSCs in adipose tissue engineering. Int J Mol Sci. 13:15881–15900. 2012. View Article : Google Scholar

53 

Hsiao ST, Asgari A, Lokmic Z, Sinclair R, Dusting GJ, Lim SY and Dilley RJ: Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose and dermal tissue. Stem Cells Dev. 21:2189–2203. 2012. View Article : Google Scholar

54 

Shukla L, Yuan Y, Shayan R, Greening DW and Karnezis T: Fat therapeutics: The clinical capacity of adipose-derived stem cells and exosomes for human disease and tissue regeneration. Front Pharmacol. 11:1582020. View Article : Google Scholar : PubMed/NCBI

55 

Hong P, Yang H, Wu Y, Li K and Tang Z: The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: A comprehensive review. Stem Cell Res Ther. 10:2422019. View Article : Google Scholar : PubMed/NCBI

56 

Wong DE, Banyard DA, Santos PJF, Sayadic LR, Evans GR and Widgerow AD: Adipose-derived stem cell extracellular vesicles: A systematic review. J Plast Reconstr Aesthet Surg. 72:1207–1218. 2019. View Article : Google Scholar : PubMed/NCBI

57 

Dinescu S, Hermenean A and Costache M: Human adipose-derived stem cells for tissue engineering approaches: Current challenges and perspectives. Stem Cells in Clinical Practice and Tissue Engineering. InTech. Chapter-14. 2018, View Article : Google Scholar

58 

Spasovski D, Spasovski V, Baščarević Z and Stojiljković M: Intra-articular injection of autologous adipose-derived mesenchymal stem cells in the treatment of knee osteoarthritis. J Gene Med. 20:e30022018. View Article : Google Scholar

59 

Maumus M, Manferdini C, Toupet K, Peyrafitte JA, Ferreira R, Facchini A, Gabusi E, Bourin P, Jorgensen C, Lisignoli G and Noël D: Adipose mesenchymal stem cells protect chondrocytes from degeneration associated with osteoarthritis. Stem Cell Res. 11:834–844. 2013. View Article : Google Scholar : PubMed/NCBI

60 

Qiu H, Liu S, Wu K, Zhao R, Cao L and Wang H: Prospective application of exosomes derived from adipose-derived stem cells in skin wound healing: A review. J Cosmet Dermatol. 19:574–581. 2020. View Article : Google Scholar

61 

Kowal J, Tkach M and Thery C: Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 29:116–125. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Minciacchi RV, Freeman MR and Vizio DD: Extracellular vesicles in cancer: Exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol. 40:41–51. 2015. View Article : Google Scholar : PubMed/NCBI

63 

Choi DS, Kim DK, Kim YK and Gho YS: Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics. 13:1554–1571. 2013. View Article : Google Scholar : PubMed/NCBI

64 

Park SJ, Kim JM, Kim J, Hur J, Park S, Kim K, Shin HJ and Chwae YJ: Molecular mechanisms of biogenesis of apoptotic exosome-like vesicles and their roles as damage-associated molecular patterns. Proc Natl Acad Sci USA. 115:E11721–E11730. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Weichand B, Weis N, Weigert A, Grossmann N, Levkau B and Brüne B: Apoptotic cells enhance sphingosine-1-phosphate receptor 1 dependent macrophage migration. Eur J Immunol. 43:3306–3313. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Kakarla R, Hur J, Kim YJ, Kim J and Chwae YJ: Apoptotic cell-derived exosomes: Messages from dying cells. Expe Mol Med. 52:1–6. 2020. View Article : Google Scholar

67 

Tao SC, Yuan T, Zhang YL, Yin WJ, Guo SC and Zhang CQ: Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics. 7:180–1895. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Vonk LA, van Dooremalen SFJ, Liv N, Klumperman J, Coffe PJ, Saris DBF and Lorenowicz MJ: Mesenchymal stromal/stem cell-derived extracellular vesicles promote human cartilage regeneration in vitro. Theranostics. 8:906–920. 2018. View Article : Google Scholar :

69 

Cosenza S, Ruiz M, Toupet K, Jorgensen C and Noël D: Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci Rep. 7:162142017. View Article : Google Scholar : PubMed/NCBI

70 

Wang Y, Yu D, Liu Z, Zhou F, Dai J, Wu B, Zhou J, Heng BC, Zou XH, Ouyang H and Liu H: Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Res. 8:1892017.

71 

Jin Z, Ren J and Qi S: Human bone mesenchymal stem cells-derived exosomes overexpressing microRNA-26a-5p alleviate osteoarthritis via down-regulation of PTGS2. Int Immunopharmacol. 78:1059462020. View Article : Google Scholar

72 

Mao G, Zhang Z, Hu S, Zhang Z, Chang Z, Huang Z, Liao W and Kang Y: Exosomes derived from miR-92a-3poverexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Res Ther. 9:2472018. View Article : Google Scholar

73 

Tofiño-Vian M, Guillén MI, Pérez del Caz MD, Silvestre A and Alcaraz MJ: Microvesicles from human adipose tissue-derived mesenchymal stem cells as a new protective strategy in osteoarthritic chondrocytes. Cell Physiol Biochem. 47:11–25. 2018. View Article : Google Scholar : PubMed/NCBI

74 

Tofiño-Vian M, Guillén MI, Pérez del Caz MD, Castejón MA and Alcaraz MJ: Extracellular vesicles from adipose-derived mesenchymal stem cells downregulate senescence features in osteoarthritic osteoblasts. Oxid Med Cell Longev. 2017:71975982017. View Article : Google Scholar : PubMed/NCBI

75 

Woo CH, Kim HK, Jung GY, Jung YJ, Lee KS, Yun YE, Han J, Lee J, Kim WS, Choi JS, et al: Small extracellular vesicles from human adipose-derived stem cells attenuate cartilage degeneration. J Extracell Vesicles. 9:17352492020. View Article : Google Scholar : PubMed/NCBI

76 

Zhao C, Chen JY, Peng WM, Yuan B, Bi Q and Xu YJ: Exosomes from adipose-derived stem cells promote chondrogenesis and suppress inflammation by upregulating miR-145 and miR-221. Mol Med Rep. 21:1881–1889. 2020.PubMed/NCBI

77 

Stepien A, Dabrowska NL, Maciagowska M, Macoch RP, Zolocinska A, Mazur S, Siennicka K, Frankowska E, Kidzinski R, Chalimoniuk M and Pojda Z: Clinical application of autologous adipose stem cells in patients with multiple sclerosis: Preliminary results. Mediators Inflamm. Sep 28–2016.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

78 

Kuriyan AE, Albini TA, Townsend JH, Rodriguez M, Pandya HK, Leonard RE II, Parrott MB, Rosenfeld PJ, Flynn HW Jr and Goldberg JL: Vision loss after intravitreal injection of autologous 'stem cells' for AMD. N Engl J Med. 376:1047–1053. 2017. View Article : Google Scholar : PubMed/NCBI

79 

Vériter S, André W, Aouassar N, Poirel HA, Lafosse A, Docquier PL and Dufrane D: Human adipose-derived mesenchymal stem cells in cell therapy: Safety and feasibility in different 'Hospital Exemption' clinical applications. PLoS One. 10:e01395662015. View Article : Google Scholar

80 

Atat OE, Antonios D, Hilal G, Hokayem N, Abou-Ghoch J, Hashim H, Serhal R, Hebbo C, Moussa M and Alaaeddine N: An evaluation of the stemness, paracrine and tumorigenic characteristics of highly expanded, minimally passaged adipose-derived stem cells. PLoS One. 11:e01623322016. View Article : Google Scholar

81 

Tátrai P, Szepesi Á, Matula Z, Szigeti A, Buchan G, Mádi A, Uher F and Német K: Combined introduction of Bmi-1 and hTERT immortalizes human adipose tissue-derived stromal cells with low risk of transformation. Biochem Biophys Res Commun. 422:28–35. 2012. View Article : Google Scholar : PubMed/NCBI

82 

Zhang Y, Liu J, Mo Y, Chen Z, Chen T, Li Y, Zheng Y, Deng S, Xu X, Chen H, et al: Immortalized mesenchymal stem cells: A safe cell source for cellular or cell membrane-based treatment of glioma. Southern Medical University; 2021

83 

Vater C, Kasten P and Stiehler M: Culture media for the differentiation of mesenchymal stromal cells. Acta Biomater. 7:463–477. 2011. View Article : Google Scholar

84 

Pelttari K, Winter A, Steck E, Goetzke K, Hennig T, Ochs BG, Aigner T and Richter W: Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum. 54:3254–3266. 2006. View Article : Google Scholar : PubMed/NCBI

85 

Puetzer JL, Petitte JN and Loboa EG: Comparative review of growth factors for induction of three-dimensional in vitro chondrogenesis in human mesenchymal stem cells isolated from bone marrow and adipose tissue. Tissue Eng Part B Rev. 16:435–444. 2010. View Article : Google Scholar : PubMed/NCBI

86 

Freyria AM and Mallein-Gerin F: Chondrocytes or adult stem cells for cartilage repair: The indisputable role of growth factors. Injury. 3:259–265. 2012. View Article : Google Scholar

87 

Santo VE, Gomes ME, Mano JF and Reis RL: Controlled release strategies for bone, cartilage and osteochondral engineering-part II: Challenges on the evolution from single to multiple bioactive factor delivery. Tissue Eng Part B Rev. 19:327–352. 2013. View Article : Google Scholar :

88 

Afizah H, Yang Z, Hui JH, Ouyang HW and Lee EH: A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors. Tissue Eng. 13:659–666. 2007. View Article : Google Scholar : PubMed/NCBI

89 

Ude CC, Shamsul BS, Ng MH, Chen HC, Ohnmar H, Amaramalar SN, Rizal AR, Johan A, Norhamdan MY, Azizi M, et al: Long-term evaluation of osteoarthritis sheep knee, treated with TGF-β3 and BMP-6 induced multipotent stem cells. Exp Gerontol. 104:43–51. 2018. View Article : Google Scholar : PubMed/NCBI

90 

Lu CH, Yeh TY, Yeh CL, Fang YH, Sung LY, Lin SY, Yen TC, Chang YH and Hu YC: Regenerating cartilages by engineered ASCs: Prolonged TGF-β3/BMP-6 expression improved articular cartilage formation and restored zonal structure. Mol Ther. 22:186–1895. 2014. View Article : Google Scholar

91 

Choi S, Cho TJ, Kwon SK, Lee G and Cho J: Chondrogenesis of periodontal ligament stem cells by transforming growth factor-β3 and bone morphogenetic protein-6 in a normal healthy impacted third molar. Int J Oral Sci. 5:7–13. 2013. View Article : Google Scholar : PubMed/NCBI

92 

Yoo KH, Thapa N, Kim BJ, Lee JO, Jang YN, Chwae YJ and Kim J: Possibility of exosome-based coronavirus disease 2019 vaccine (Review). Mol Med Rep. 25:262022. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yoo KH, Thapa N, Chwae YJ, Yoon SH, Kim BJ, Lee JO, Jang YN and Kim J: Transforming growth factor‑β family and stem cell‑derived exosome therapeutic treatment in osteoarthritis (Review). Int J Mol Med 49: 62, 2022.
APA
Yoo, K.H., Thapa, N., Chwae, Y.J., Yoon, S.H., Kim, B.J., Lee, J.O. ... Kim, J. (2022). Transforming growth factor‑β family and stem cell‑derived exosome therapeutic treatment in osteoarthritis (Review). International Journal of Molecular Medicine, 49, 62. https://doi.org/10.3892/ijmm.2022.5118
MLA
Yoo, K. H., Thapa, N., Chwae, Y. J., Yoon, S. H., Kim, B. J., Lee, J. O., Jang, Y. N., Kim, J."Transforming growth factor‑β family and stem cell‑derived exosome therapeutic treatment in osteoarthritis (Review)". International Journal of Molecular Medicine 49.5 (2022): 62.
Chicago
Yoo, K. H., Thapa, N., Chwae, Y. J., Yoon, S. H., Kim, B. J., Lee, J. O., Jang, Y. N., Kim, J."Transforming growth factor‑β family and stem cell‑derived exosome therapeutic treatment in osteoarthritis (Review)". International Journal of Molecular Medicine 49, no. 5 (2022): 62. https://doi.org/10.3892/ijmm.2022.5118
Copy and paste a formatted citation
x
Spandidos Publications style
Yoo KH, Thapa N, Chwae YJ, Yoon SH, Kim BJ, Lee JO, Jang YN and Kim J: Transforming growth factor‑β family and stem cell‑derived exosome therapeutic treatment in osteoarthritis (Review). Int J Mol Med 49: 62, 2022.
APA
Yoo, K.H., Thapa, N., Chwae, Y.J., Yoon, S.H., Kim, B.J., Lee, J.O. ... Kim, J. (2022). Transforming growth factor‑β family and stem cell‑derived exosome therapeutic treatment in osteoarthritis (Review). International Journal of Molecular Medicine, 49, 62. https://doi.org/10.3892/ijmm.2022.5118
MLA
Yoo, K. H., Thapa, N., Chwae, Y. J., Yoon, S. H., Kim, B. J., Lee, J. O., Jang, Y. N., Kim, J."Transforming growth factor‑β family and stem cell‑derived exosome therapeutic treatment in osteoarthritis (Review)". International Journal of Molecular Medicine 49.5 (2022): 62.
Chicago
Yoo, K. H., Thapa, N., Chwae, Y. J., Yoon, S. H., Kim, B. J., Lee, J. O., Jang, Y. N., Kim, J."Transforming growth factor‑β family and stem cell‑derived exosome therapeutic treatment in osteoarthritis (Review)". International Journal of Molecular Medicine 49, no. 5 (2022): 62. https://doi.org/10.3892/ijmm.2022.5118
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team