1
|
Berman K and Brodaty H: Psychosocial
effects of age-related macular degeneration. Int Psychogeriatr.
18:415–428. 2006. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chan EC, van Wijngaarden P, Liu GS, Jiang
F, Peshavariya H and Dusting GJ: Involvement of Nox2 NADPH oxidase
in retinal neovascularization. Invest Ophthalmol Vis Sci.
54:7061–7067. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Engelmann D, Mayoli-Nüssle D, Mayrhofer C,
Fürst K, Alla V, Stoll A, Spitschak A, Abshagen K, Vollmar B, Ran S
and Pützer BM: E2F1 promotes angiogenesis through the
VEGF-C/VEGFR-3 axis in a feedback loop for cooperative induction of
PDGF-B. J Mol Cell Biol. 5:391–403. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ma JF, Von Kalle M, Plautz QM, Xu F, Singh
L and Wang L: Relaxin promotes in vitro tumour growth, invasion and
angiogenesis of human Saos-2 osteosarcoma cells by AKT/VEGF
pathway. Eur Rev Med Pharmacol Sci. 17:1345–1350. 2013.PubMed/NCBI
|
5
|
Muller YA, Christinger HW, Keyt BA and de
Vos AM: The crystal structure of vascular endothelial growth factor
(VEGF) refined to 1.93 A resolution: Multiple copy flexibility and
receptor binding. Structure. 5:1325–1338. 1997. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ciulla TA, Danis RP, Criswell M and Pratt
LM: Changing therapeutic paradigms for exudative age-related
macular degeneration: Antiangiogenic agents and photodynamic
therapy. Expert Opin Investig Drugs. 8:2173–2182. 1999. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ogino K, Tsujikawa A, Yamashiro K, Ooto S,
Oishi A, Nakata I, Miyake M and Yoshimura N: Intravitreal injection
of ranibizumab for recovery of macular function in eyes with
subfoveal polypoidal choroidal vasculopathy. Invest Ophthalmol Vis
Sci. 54:3771–3779. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Frampton JE: Ranibizumab: A review of its
use in the treatment of neovascular age-related macular
degeneration. Drugs Aging. 30:331–358. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Scott AW and Bressler SB: Long-term
follow-up of vascular endothelial growth factor inhibitor therapy
for neovascular age-related macular degeneration. Curr Opin
Ophthalmol. 24:190–196. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Jiang S, Park C and Barner JC: Ranibizumab
for age-related macular degeneration: A meta-analysis of dose
effects and comparison with no anti-VEGF treatment and bevacizumab.
J Clin Pharm Ther. 39:234–239. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Binder S: Loss of reactivity in
intravitreal anti-VEGF therapy: Tachyphylaxis or tolerance? Br J
Ophthalmol. 96:1–2. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ehlken C, Jungmann S, Bohringer D,
Agostini HT, Junker B and Pielen A: Switch of anti-VEGF agents is
an option for nonresponders in the treatment of AMD. Eye (Lond).
28:538–545. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Fassnacht-Riederle H, Becker M, Graf N and
Michels S: Effect of aflibercept in insufficient responders to
prior anti-VEGF therapy in neovascular AMD. Graefes Arch Clin Exp
Ophthalmol. 252:1705–1709. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Bakall B, Folk JC, Boldt HC, Sohn EH,
Stone EM, Russell SR and Mahajan VB: Aflibercept therapy for
exudative age-related macular degeneration resistant to bevacizumab
and ranibizumab. Am J Ophthalmol. 156:15–22. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Schmidt-Erfurth U, Kaiser PK, Korobelnik
JF, Brown DM, Chong V, Nguyen QD, Ho AC, Ogura Y, Simader C, Jaffe
GJ, et al: Intravitreal aflibercept injection for neovascular
age-related macular degeneration: Ninety-six-week results of the
VIEW studies. Ophthalmology. 121:193–201. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Fritsche LG, Fariss RN, Stambolian D,
Abecasis GR, Curcio CA and Swaroop A: Age-related macular
degeneration: Genetics and biology coming together. Annu Rev
Genomics Hum Genet. 15:151–171. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Xu XD, Li KR, Li XM, Yao J, Qin J and Yan
B: Long non-coding RNAs: New players in ocular neovascularization.
Mol Biol Rep. 41:4493–4505. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
McLaughlin MM, Paglione MG, Slakter J,
Tolentino M, Ye L, Xu CF, Suttle AB and Kim RY: Initial exploration
of oral pazopanib in healthy participants and patients with
age-related macular degeneration. JAMA Ophthalmol. 131:1595–1601.
2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Arcondéguy T, Lacazette E, Millevoi S,
Prats H and Touriol C: VEGF-A mRNA processing, stability and
translation: A paradigm for intricate regulation of gene expression
at the post-transcriptional level. Nucleic Acids Res. 41:7997–8010.
2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Claffey KP, Shih SC, Mullen A, Dziennis S,
Cusick JL, Abrams KR, Lee SW and Detmar M: Identification of a
human VPF/VEGF 3′ untranslated region mediating hypoxia-induced
mRNA stability. Mol Biol Cell. 9:469–481. 1998. View Article : Google Scholar : PubMed/NCBI
|
21
|
Levy NS, Chung S, Furneaux H and Levy AP:
Hypoxic stabilization of vascular endothelial growth factor mRNA by
the RNA-binding protein HuR. J Biol Chem. 273:6417–6423. 1998.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Cherradi N, Lejczak C, Desroches-Castan A
and Feige JJ: Antagonistic functions of tetradecanoyl phorbol
acetate-inducible-sequence 11b and HuR in the hormonal regulation
of vascular endothelial growth factor messenger ribonucleic acid
stability by adrenocorticotropin. Mol Endocrinol. 20:916–930. 2006.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Lee HH, Son YJ, Lee WH, Park YW, Chae SW,
Cho WJ, Kim YM, Choi HJ, Choi DH, Jung SW, et al: Tristetraprolin
regulates expression of VEGF and tumorigenesis in human colon
cancer. Int J Cancer. 126:1817–1827. 2010.PubMed/NCBI
|
24
|
Brooks SA and Blackshear PJ:
Tristetraprolin (TTP): Interactions with mRNA and proteins, and
current thoughts on mechanisms of action. Biochim Biophys Acta.
1829:666–679. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Cha HJ, Lee HH, Chae SW, Cho WJ, Kim YM,
Choi HJ, Choi DH, Jung SW, Min YJ, Lee BJ, et al: Tristetraprolin
downregulates the expression of both VEGF and COX-2 in human colon
cancer. Hepatogastroenterology. 58:790–795. 2011.PubMed/NCBI
|
26
|
Brennan SE, Kuwano Y, Alkharouf N,
Blackshear PJ, Gorospe M and Wilson GM: The mRNA-destabilizing
protein tristetraprolin is suppressed in many cancers, altering
tumorigenic phenotypes and patient prognosis. Cancer Res.
69:5168–5176. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lee HH, Vo MT, Kim HJ, Lee UH, Kim CW, Kim
HK, Ko MS, Lee WH, Cha SJ, Min YJ, et al: Stability of the LATS2
tumor suppressor gene is regulated by tristetraprolin. J Biol Chem.
285:17329–17337. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Schmittgen TD and Livak KJ: Analyzing
real-time PCR data by the comparative C(T) method. Nat Protoc.
3:1101–1108. 2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
Baou M, Jewell A and Murphy JJ: TIS11
family proteins and their roles in posttranscriptional gene
regulation. J Biomed Biotechnol. 2009:6345202009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Carballo E, Lai WS and Blackshear PJ:
Feedback inhibition of macrophage tumor necrosis factor-alpha
production by tristetraprolin. Science. 281:1001–1005. 1998.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Hau HH, Walsh RJ, Ogilvie RL, Williams DA,
Reilly CS and Bohjanen PR: Tristetraprolin recruits functional mRNA
decay complexes to ARE sequences. J Cell Biochem. 100:1477–1492.
2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Nanbu R, Menoud PA and Nagamine Y:
Multiple instability-regulating sites in the 3′ untranslated region
of the urokinase-type plasminogen activator mRNA. Mol Cell Biol.
14:4920–4928. 1994. View Article : Google Scholar : PubMed/NCBI
|
33
|
Roldan AL, Cubellis MV, Masucci MT,
Behrendt N, Lund LR, Danø K, Appella E and Blasi F: Cloning and
expression of the receptor for human urokinase plasminogen
activator, a central molecule in cell surface, plasmin dependent
proteolysis. EMBO J. 9:467–474. 1990.PubMed/NCBI
|
34
|
Fini ME, Plucinska IM, Mayer AS, Gross RH
and Brinckerhoff CE: A gene for rabbit synovial cell collagenase:
Member of a family of metalloproteinases that degrade the
connective tissue matrix. Biochemistry. 26:6156–6165. 1987.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Hacker C, Valchanova R, Adams S and Munz
B: ZFP36L1 is regulated by growth factors and cytokines in
keratinocytes and influences their VEGF production. Growth Factors.
28:178–190. 2010. View Article : Google Scholar : PubMed/NCBI
|