1
|
Aronoff R and Petersen CC: Layer, column
and cell-type specific genetic manipulation in mouse barrel cortex.
Front Neurosci. 2:64–71. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
DeFelipe J and Fariñas I: The pyramidal
neuron of the cerebral cortex: Morphological and chemical
characteristics of the synaptic inputs. Prog Neurobiol. 39:563–607.
1992. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kawaguchi Y and Kubota Y: GABAergic cell
subtypes and their synaptic connections in rat frontal cortex.
Cerebral Cortex. 7:476–486. 1997. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hioki H: Compartmental organization of
synaptic inputs to parvalbumin-expressing GABAergic neurons in
mouse primary somatosensory cortex. Anat Sci Int. 90:7–21. 2015.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Lehmann K, Steinecke A and Bolz J: GABA
through the ages: Regulation of cortical function and plasticity by
inhibitory interneurons. Neural Plast. 2012:8927842012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kawaguchi Y, Wilson CJ, Augood SJ and
Emson PC: Striatal interneurones: Chemical, physiological and
morphological characterization. Trends Neurosci. 18:527–535. 1995.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Baimbridge KG, Celio MR and Rogers JH:
Calcium-binding proteins in the nervous system. Trends Neurosci.
15:303–308. 1992. View Article : Google Scholar : PubMed/NCBI
|
8
|
Burgoyne RD: Neuronal calcium sensor
proteins: Generating diversity in neuronal Ca2+ signalling. Nat Rev
Neurosci. 8:182–193. 2007. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Arundine M and Tymianski M: Molecular
mechanisms of calcium-dependent neurodegeneration in
excitotoxicity. Cell Calcium. 34:325–337. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Oh MM, Oliveira FA, Waters J and
Disterhoft JF: Altered calcium metabolism in aging CA1 hippocampal
pyramidal neurons. J Neurosci. 33:7905–7911. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kuchibhotla KV, Goldman ST, Lattarulo CR,
Wu HY, Hyman BT and Bacskai BJ: Abeta plaques lead to aberrant
regulation of calcium homeostasis in vivo resulting in structural
and functional disruption of neuronal networks. Neuron. 59:214–225.
2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Villa A, Podini P, Panzeri MC, Racchetti G
and Meldolesi J: Cytosolic Ca2+ binding proteins during rat brain
ageing: Loss of calbindin and calretinin in the hippocampus, with
no change in the cerebellum. Eur J Neurosci. 6:1491–1499. 1994.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Kishimoto J, Tsuchiya T, Cox H, Emson PC
and Nakayama Y: Age-related changes of calbindin-D28k, calretinin
and parvalbumin mRNAs in the hamster brain. Neurobiol Aging.
19:77–82. 1998. View Article : Google Scholar : PubMed/NCBI
|
14
|
Gonchar Y, Wang Q and Burkhalter A:
Multiple distinct subtypes of GABAergic neurons in mouse visual
cortex identified by triple immunostaining. Front Neuroanat.
1:32008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Litwinowicz B, Labuda C, Kowiański P,
Spodnik JH, Ludkiewicz B, Wójcik S and Moryś J: Developmental
pattern of calbindin D28k protein expression in the rat striatum
and cerebral cortex. Folia Morphol (Warsz). 62:327–329.
2003.PubMed/NCBI
|
16
|
Bu J, Sathyendra V, Nagykery N and Geula
C: Age-related changes in calbindin-D28k, calretinin, and
parvalbumin-immunoreactive neurons in the human cerebral cortex.
Exp Neurol. 182:220–231. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Selakovic V, Balind Rauš S, Radenovic L,
Prolić Z and Janać B: Age-dependent effects of ELF-MF on oxidative
stress in the brain of Mongolian gerbils. Cell Biochem Biophys.
66:513–521. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lores-Arnaiz S, Lombardi P, Karadayian AG,
Orgambide F, Cicerchia D and Bustamante J: Brain cortex
mitochondrial bioenergetics in synaptosomes and non-synaptic
mitochondria during aging. Neurochem Res. 41:353–363. 2016.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Zheng T, Lv Q, Lei X, Yin X and Zhang B:
Spatial distribution of 5-hydroxymethyl cytosine in rat brain and
temporal distribution in striatum. Neurochem Res. 40:688–697. 2015.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Vanhooren V and Libert C: The mouse as a
model organism in aging research: Usefulness, pitfalls and
possibilities. Ageing Res Rev. 12:8–21. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Quinn R: Comparing rat's to human's age:
How old is my rat in people years? Nutrition. 21:775–777. 2005.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Demetrius L: Aging in mouse and human
systems. Ann N Y Acad Sci. 1067:66–82. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Gorbunova V, Bozzella MJ and Seluanov A:
Rodents for comparative aging studies: From mice to beavers. Age
(Dordr). 30:111–119. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Institute of Laboratory Animal Research,
Committee for the Update of the Guide for the Care and Use of
Laboratory Animals, National Research Council, . Guide for the care
and use of laboratory animals. 8th edition. Washington, (DC):
National Academies Press; pp. 2202011
|
25
|
Bae EJ, Chen BH, Shin BN, Cho JH, Kim IH,
Park JH, Lee JC, Tae HJ, Choi SY, Kim JD, et al: Comparison of
immunoreactivities of calbindin-D28k, calretinin and parvalbumin in
the striatum between young, adult and aged mice, rats and gerbils.
Neurochem Res. 40:864–872. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Keith BJ and George P Franklin: The Mouse
Brain in Stereotaxic Coordinates. San Diego, California: Academic
Press, Inc.; pp. 20–39. 1997
|
27
|
George P and Charles W: The Rat Brain in
Stereotaxic Coordinates. 2nd. San Diego, California: Academic
Press, Inc.; pp. 11–24. 1986
|
28
|
William JL, Peter L and Anthony MV: A
stereotaxic Atlas of the Mongolian Gerbil Brain (Meriones
unguiculatus). Ann Arbor, Michigan: Ann Arbor Science Publishers
Inc.; pp. 36–60. 1974
|
29
|
Lee JC, Ahn JH, Lee DH, Yan BC, Park JH,
Kim IH, Cho GS, Kim YM, Lee B, Park CW, et al: Neuronal damage and
gliosis in the somatosensory cortex induced by various durations of
transient cerebral ischemia in gerbils. Brain Res. 1510:78–88.
2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Shetty AK and Turner DA: Hippocampal
interneurons expressing glutamic acid decarboxylase and
calcium-binding proteins decrease with aging in Fischer 344 rats. J
Comp Neurol. 394:252–269. 1998. View Article : Google Scholar : PubMed/NCBI
|
31
|
Lee CH, Hwang IK, Yoo KY, Choi JH, Park
OK, Lee JC, Jeong YG, Lee IS and Won MH: Calbindin d-28k
immunoreactivity and its protein level in hippocampal subregions
during normal aging in gerbils. Cell Mol Neurobiol. 29:665–672.
2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lee CH, Hwang IK, Choi JH, Yoo KY, Park
OK, Huh SO, Lee YL, Shin HC and Won MH: Age-dependent changes in
calretinin immunoreactivity and its protein level in the gerbil
hippocampus. Neurochem Res. 35:122–129. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Pugliese M, Carrasco J, Geloso MC, Mascort
J, Michetti F and Mahy N: γ-aminobutyric acidergic interneuron
vulnerability to aging in canine prefrontal cortex. J Neurosci Res.
77:913–920. 2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
DeFelipe J and Fariñas I: The pyramidal
neuron of the cerebral cortex: Morphological and chemical
characteristics of the synaptic inputs. Prog Neurobiol. 39:563–607.
1992. View Article : Google Scholar : PubMed/NCBI
|
35
|
Meskenaite V: Calretinin-immunoreactive
local circuit neurons in area 17 of the cynomolgus monkey, Macaca
fascicularis. J Comp Neurol. 379:113–132. 1997. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ferrer-Blasco T, González-Méijome JM and
Montés-Micó R: Age-related changes in the human visual system and
prevalence of refractive conditions in patients attending an eye
clinic. J Cataract Refract Surg. 34:424–432. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Lehmann K, Schmidt KF and Löwel S: Vision
and visual plasticity in ageing mice. Restor Neurol Neurosci.
30:161–178. 2012.PubMed/NCBI
|
38
|
Hua T, Li X, He L, Zhou Y, Wang Y and
Leventhal AG: Functional degradation of visual cortical cells in
old cats. Neurobiol Aging. 27:155–162. 2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Leventhal AG, Wang Y, Pu M, Zhou Y and Ma
Y: GABA and its agonists improved visual cortical function in
senescent monkeys. Science. 300:812–815. 2003. View Article : Google Scholar : PubMed/NCBI
|