1
|
WHO. Visual impairment and blindness, .
2014.http://www.who.int/mediacentre/factsheets/fs282/en/May
14–2016
|
2
|
Liu YC, Wilkins M, Kim T, Malyugin B and
Mehta JS: Cataracts. Lancet. 390:6002017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Li FF, Zhu SQ, Wang SZ, Gao C, Huang SZ,
Zhang M and Ma X: Nonsense mutation in the CRYBB2 gene causing
autosomal dominant progressive polymorphic congenital coronary
cataracts. Mol Vis. 14:750–755. 2008.PubMed/NCBI
|
4
|
Zhong Z, Wu Z, Han L and Chen J: Novel
mutations in CRYGC are associated with congenital cataracts in
Chinese families. Sci Rep. 7:1892017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Shiels A and Hejtmancik JF: Molecular
genetics of cataract. John Wiley & Sons, Ltd. 37:672014.
|
6
|
Brémond-Gignac D, Bitoun P, Reis LM, Copin
H, Murray JC and Semina EV: Identification of dominant FOXE3 and
PAX6 mutations in patients with congenital cataract and aniridia.
Mol Vis. 16:1705–1711. 2010.PubMed/NCBI
|
7
|
Aldahmesh MA, Khan AO, Mohamed J and
Alkuraya FS: Novel recessive BFSP2 and PITX3 mutations: Insights
into mutational mechanisms from consanguineous populations. Genet
Med. 13:978–981. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kent WJ, Sugnet CW, Furey TS, Roskin KM,
Pringle TH, Zahler AM and Haussler D: The human genome browser at
UCSC. Genome Res. 12:996–1006. 2002. View Article : Google Scholar : PubMed/NCBI
|
9
|
Robinson JT, Thorvaldsdóttir H, Winckler
W, Guttman M, Lander ES, Getz G and Mesirov JP: Integrative
genomics viewer. Nat Biotechnol. 29:24–26. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sorokina EA, Muheisen S, Mlodik N and
Semina EV: MIP/Aquaporin 0 represents a direct transcriptional
target of PITX3 in the developing lens. PLoS One. 6:e211222011.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Deng H and Yuan L: Molecular genetics of
congenital nuclear cataract. Eur J Med Genet. 57:113–122. 2014.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Adamsons I, Muñoz B, Enger C and Taylor
HR: Prevalence of lens opacities in surgical and general
populations. Arch Ophthalmol. 109:993–997. 1991. View Article : Google Scholar : PubMed/NCBI
|
13
|
Shiels A, Bennett TM and Hejtmancik JF:
Cat-Map: Putting cataract on the map. Mol Vis. 16:2007–2015.
2010.PubMed/NCBI
|
14
|
Verdin H, Sorokina EA, Meire F, Casteels
I, de Ravel T, Semina EV and De Baere E: Novel and recurrent PITX3
mutations in Belgian families with autosomal dominant congenital
cataract and anterior segment dysgenesis have similar phenotypic
and functional characteristics. Orphanet J Rare Dis. 9:262014.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Semina EV, Ferrell RE, Mintz-Hittner HA,
Bitoun P, Alward WL, Reiter RS, Funkhauser C, Daack-Hirsch S and
Murray JC: A novel homeobox gene PITX3 is mutated in families with
autosomal-dominant cataracts and ASMD. Nat Genet. 19:167–170. 1998.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Berry V, Francis PJ, Prescott Q, Waseem
NH, Moore AT and Bhattacharya SS: A novel 1-bp deletion in PITX3
causing congenital posterior polar cataract. Mol Vis. 17:1249–1253.
2011.PubMed/NCBI
|
17
|
Liu H, Liu H, Tang J, Lin Q, Sun Y, Wang
C, Yang H, Khan MR, Peerbux MW, Ahmad S, et al: Whole exome
sequencing identifies a novel mutation in the PITX3 gene, causing
autosomal dominant congenital cataracts in a Chinese family. Ann
Clin Lab Sci. 47:92–95. 2017.PubMed/NCBI
|
18
|
Berry V, Yang Z, Addison PK, Francis PJ,
Ionides A, Karan G, Jiang L, Lin W, Hu J, Yang R, et al: Recurrent
17 bp duplication in PITX3 is primarily associated with posterior
polar cataract (CPP4). J Med Genet. 41:e1092004. View Article : Google Scholar : PubMed/NCBI
|
19
|
Finzi S, Li Y, Mitchell TN, Farr A,
Maumenee IH, Sallum JM and Sundin O: Posterior polar cataract:
Genetic analysis of a large family. Ophthalmic Genet. 26:125–130.
2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Burdon KP, McKay JD, Wirth MG,
Russell-Eggit IM, Bhatti S, Ruddle JB, Dimasi D, Mackey DA and
Craig JE: The PITX3 gene in posterior polar congenital cataract in
Australia. Mol Vis. 12:367–371. 2006.PubMed/NCBI
|
21
|
Summers KM, Withers SJ, Gole GA, Piras S
and Taylor PJ: Anterior segment mesenchymal dysgenesis in a large
Australian family is associated with the recurrent 17 bp
duplication in PITX3. Mol Vis. 14:2010–2015. 2008.PubMed/NCBI
|
22
|
Bidinost C, Matsumoto M, Chung D, Salem N,
Zhang K, Stockton DW, Khoury A, Megarbane A, Bejjani BA and
Traboulsi EI: Heterozygous and homozygous mutations in PITX3 in a
large Lebanese family with posterior polar cataracts and
neurodevelopmental abnormalities. Invest Ophthalmol Vis Sci.
47:1274–1280. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zazo Seco C, Plaisancié J, Lupasco T,
Michot C, Pechmeja J, Delanne J, Cottereau E, Ayuso C, Corton M,
Calvas P, et al: Identification of PITX3 mutations in individuals
with various ocular developmental defects. Ophthalmic Genet.
39:314–320. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Sakazume S, Sorokina E, Iwamoto Y and
Semina EV: Functional analysis of human mutations in homeodomain
transcription factor PITX3. BMC Mol Biol. 8:842007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Takata K, Matsuzaki T and Tajika Y:
Aquaporins: Water channel proteins of the cell membrane. Prog
Histochem Cytochem. 39:1–83. 2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Gorin MB, Yancey SB, Cline J, Revel JP and
Horwitz J: The major intrinsic protein (MIP) of the bovine lens
fiber membrane: Characterization and structure based on cDNA
cloning. Cell. 39:49–59. 1984. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ahmad N, Aslam M, Muenster D, Horsch M,
Khan MA, Carlsson P, Beckers J and Graw J: Pitx3 directly regulates
Foxe3 during early lens development. Int J Dev Biol. 57:741–751.
2013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Boone PM, Yuan B, Gu S, Ma Z, Gambin T,
Gonzaga-Jauregui C, Jain M, Murdock TJ, White JJ, Jhangiani SN, et
al: Hutterite-type cataract maps to chromosome 6p21.32-p21.31,
cosegregates with a homozygous mutation in LEMD2 and is associated
with sudden cardiac death. Mol Genet Genomic Med. 4:77–94. 2015.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Huber MD, Guan T and Gerace L: Overlapping
functions of nuclear envelope proteins NET25 (Lem2) and emerin in
regulation of extracellular signal-regulated kinase signaling in
myoblast differentiation. Mol Cell Biol. 29:5718–5728. 2009.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Tapia O, Fong LG, Huber MD, Young SG and
Gerace L: Nuclear envelope protein Lem2 is required for mouse
development and regulates MAP and AKT kinases. PLoS One.
10:e01161962015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Golestaneh N, Fan J, Fariss RN, Lo WK,
Zelenka PS and Chepelinsky AB: Lens major intrinsic protein
(MIP)/aquaporin 0 expression in rat lens epithelia explants
requires fibroblast growth factor-induced ERK and JNK signaling. J
Biol Chem. 279:31813–31822. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Saadi I, Kuburas A, Engle JJ and Russo AF:
Dominant negative dimerization of a mutant homeodomain protein in
Axenfeld-Rieger syndrome. Mol Cell Biol. 23:1968–1982. 2003.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Moede T, Leibiger B, Pour HG, Berggren P
and Leibiger IB: Identification of a nuclear localization signal,
RRMKWKK, in the homeodomain transcription factor PDX-1. FEBS Lett.
461:229–234. 1999. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hessabi B, Ziegler P, Schmidt I, Hessabi C
and Walther R: The nuclear localization signal (NLS) of PDX-1 is
part of the homeodomain and represents a novel type of NLS. Eur J
Biochem. 263:170–177. 1999. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kozlowski K and Walter MA: Variation in
residual PITX2 activity underlies the phenotypic spectrum of
anterior segment developmental disorders. Hum Mol Genet.
9:2131–2139. 2000. View Article : Google Scholar : PubMed/NCBI
|
36
|
Sabherwal N, Schneider KU, Blaschke RJ,
Marchini A and Rappold G: Impairment of SHOX nuclear localization
as a cause for Léri-Weill syndrome. J Cell Sci. 117:3041–3048.
2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Sabherwal N, Blaschke RJ, Marchini A,
Heine-Suner D, Rosell J, Ferragut J, Blum WF and Rappold G: A novel
point mutation A170P in the SHOX gene defines impaired nuclear
translocation as a molecular cause for Léri-Weill dyschondrosteosis
and Langer dysplasia. J Med Genet. 41:e832004. View Article : Google Scholar : PubMed/NCBI
|