1
|
Neely KA and Gardner TW: Ocular
neovascularization: Clarifying complex interactions. Am J Pathol.
153:2733–670. 1998. View Article : Google Scholar
|
2
|
Chappelow AV and Kaiser PK: Neovascular
age-related macular degeneration. Drugs. 68:1029–1036. 2008.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Aiello LP, Avery RL, Arrigg PG, Keyt BA,
Jampel HD, Shah ST, Pasquale LR, Thieme H, Iwamoto MA, Park JE, et
al: Vascular endothelial growth factor in ocular fluid of patients
with diabetic retinopathy and other retinal disorders. N Engl J
Med. 331:1480–1487. 1994. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kwak N, Okamoto N, Wood JM and Campochiaro
PA: VEGF is major stimulator in model of choroidal
neovascularization. Invest Ophthalmol Vis Sci. 41:3158–3164.
2000.PubMed/NCBI
|
5
|
Klettner A, Westhues D, Lassen J, Bartsch
S and Roider J: Regulation of constitutive vascular endothelial
growth factor secretion in retinal pigment epithelium/choroid organ
cultures: p38, nuclear factor κB, and the vascular endothelial
growth factor receptor-2/phosphatidylinositol 3 kinase pathway. Mol
Vis. 19:281–291. 2013.PubMed/NCBI
|
6
|
Klettner A, Kaya L, Flach J, Lassen J,
Treumer F and Roider J: Basal and apical regulation of VEGF-A and
placenta growth factor in the RPE/choroid and primary RPE. Mol Vis.
21:736–748. 2015.PubMed/NCBI
|
7
|
Shweiki D, Itin A, Soffer D and Keshet E:
Vascular endothelial growth factor induced by hypoxia may mediate
hypoxia-initiated angiogenesis. Nature. 359:843–845. 1992.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Yang X, Cao J, Du Y, Gong Q and Cheng Y:
Angiopoietin-like protein 4 (ANGPTL4) induces retinal pigment
epithelial barrier breakdown by activating signal transducer and
activator of transcription 3 (STAT3): Evidence from ARPE-19 cells
under hypoxic condition and diabetic rats. Med Sci Monit.
25:6742–6754. 2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Arjamaa O, Aaltonen V, Piippo N, Csont T,
Petrovski G, Kaarniranta K and Kauppinen A: Hypoxia and
inflammation in the release of VEGF and interleukins from human
retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol.
255:1757–1762. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Patel AK, Syeda S and Hackam AS: Signal
transducer and activator of transcription 3 (STAT3) signaling in
retinal pigment epithelium cells. JAKSTAT. 2:e254342013.PubMed/NCBI
|
11
|
Gutsaeva DR, Thounaojam M, Rajpurohit S,
Powell FL, Martin PM, Goei S, Duncan M and Bartoli M:
STAT3-mediated activation of miR-21 is involved in down-regulation
of TIMP3 and neovascularization in the ischemic retina. Oncotarget.
8:103568–103580. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wei D, Le X, Zheng L, Wang L, Frey JA, Gao
AC, Peng Z, Huang S, Xiong HQ, Abbruzzese JL and Xie K: Stat3
activation regulates the expression of vascular endothelial growth
factor and human pancreatic cancer angiogenesis and metastasis.
Oncogene. 22:319–329. 2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Loureiro RM, Maharaj AS, Dankort D, Muller
WJ and D'Amore PA: ErbB2 overexpression in mammary cells
upregulates VEGF through the core promoter. Biochem Biophys Res
Commun. 326:455–465. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yang W, Klos K, Yang Y, Smith TL, Shi D
and Yu D: ErbB2 overexpression correlates with increased expression
of vascular endothelial growth factors A, C, and D in human breast
carcinoma. Cancer. 94:2855–2861. 2002. View Article : Google Scholar : PubMed/NCBI
|
15
|
Venturutti L, Romero LV, Urtreger AJ,
Chervo MF, Cordo Russo RI, Mercogliano MF, Inurrigarro G, Pereyra
MG, Proietti CJ, Izzo F, et al: Stat3 regulates ErbB-2 expression
and co-opts ErbB-2 nuclear function to induce miR-21 expression,
PDCD4 downregulation and breast cancer metastasis. Oncogene.
35:2208–2222. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Li X, Cai Y, Wang YS, Shi YY, Hou W, Xu
CS, Wang HY, Ye Z, Yao LB and Zhang J: Hyperglycaemia exacerbates
choroidal neovascularisation in mice via the oxidative
stress-induced activation of STAT3 signalling in RPE cells. PLoS
One. 7:e476002012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Maisto R, Oltra M, Vidal-Gil L,
Martínez-Gil N, Sancho-Pellúz J, Filippo CD, Rossi S, D Amico M,
Barcia JM and Romero FJ: ARPE-19-derived VEGF-containing exosomes
promote neovascularization in HUVEC: The role of the melanocortin
receptor 5. Cell Cycle. 18:413–424. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen L, Bai Y, Zhao M and Jiang Y: TLR4
inhibitor attenuates amyloid-β-induced angiogenic and inflammatory
factors in ARPE-19 cells: Implications for age-related macular
degeneration. Mol Med Rep. 13:3249–56. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhao J, Geng YU, Hua H, Cun B, Chen Q, Xi
X, Yang L and Li Y: Fenofibrate inhibits the expression of VEGFC
and VEGFR-3 in retinal pigmental epithelial cells exposed to
hypoxia. Exp Ther Med. 10:1404–1412. 2015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ryu J, Seong H, Yoon NA, Seo SW, Park JW,
Kang SS, Park JM and Han YS: Tristetraprolin regulates the decay of
the hypoxia-induced vascular endothelial growth factor mRNA in
ARPE-19 cells. Mol Med Rep. 14:5395–5400. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Dorrell M, Uusitalo-Jarvinen H, Aguilar E
and Friedlander M: Ocular neovascularization: Basic mechanisms and
therapeutic advances. Surv Ophthalmol. 52 (Suppl 1):S3–S19. 2007.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Gacche R and Meshram R: Angiogenic factors
as potential drug target: Efficacy and limitations of
anti-angiogenic therapy. Biochim Biophys Acta. 1846:161–179.
2014.PubMed/NCBI
|
23
|
Falavarjani KG and Nguyen Q: Adverse
events and complications associated with intravitreal injection of
anti-VEGF agents: A review of literature. Eye (Lond). 27:787–794.
2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
D'Ignazio L and Rocha S: Hypoxia induced
NF-κB. Cells. 5:102016. View Article : Google Scholar
|
25
|
Faridvand Y, Nozari S, Atashkhoei S, Nouri
M and Jodati A: Amniotic membrane extracted proteins protect H9c2
cardiomyoblasts against hypoxia-induced apoptosis by modulating
oxidative stress. Biochem Biophys Res Commun. 503:1335–1341. 2018.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Kovacs K, Vaczy A, Fekete K, Kovari P,
Atlasz T, Reglodi D, Gabriel R, Gallyas F and Sumegi B: PARP
inhibitor protects against chronic hypoxia/reoxygenation-induced
retinal injury by regulation of MAPKs, HIF1α, Nrf2, and NFκB.
Invest Ophthalmol Vis Sci. 60:1478–1490. 2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Huang Z, Zheng D, Pu J, Dai J, Zhang Y,
Zhang W and Wu Z: MicroRNA-125b protects liver from
ischemia/reperfusion injury via inhibiting TRAF6 and NF-κB pathway.
Biosci Biotechnol Biochem. 83:829–835. 2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Albensi B: What is nuclear factor kappa B
(NF-κB) doing in and to the mitochondrion? Front Cell Dev Biol.
7:1542019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhang YB, Wang X, Meister EA, Gong KR, Yan
SC, Lu GW, Ji XM and Shao G: The effects of CoCl2 on HIF-1α protein
under experimental conditions of autoprogressive hypoxia using
mouse models. Int J Mol Sci. 15:10999–11012. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Gray MJ, Zhang J, Ellis LM, Semenza GL,
Evans DB, Watowich SS and Gallick GE: HIF-1α, STAT3, CBP/p300 and
Ref-1/APE are components of a transcriptional complex that
regulates Src-dependent hypoxia-induced expression of VEGF in
pancreatic and prostate carcinomas. Oncogene. 24:3110–3120. 2005.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Hawthorne VS, Huang WC, Neal CL, Tseng LM,
Hung MC and Yu D: ErbB2-mediated Src and signal transducer and
activator of transcription 3 activation leads to transcriptional
up-regulation of p21Cip1 and chemoresistance in breast cancer
cells. Mol Cancer Res. 7:592–600. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ford KM, Saint-Geniez M, Walshe T, Zahr A
and D'Amore PA: Expression and role of VEGF in the adult retinal
pigment epithelium. Invest Ophthalmol Vis Sci. 52:9478–9487. 2011.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Li R, Du JH, Yao GM, Yao Y and Zhang J:
Autophagy: A new mechanism for regulating VEGF and PEDF expression
in retinal pigment epithelium cells. Int J Ophthalmol. 12:557–562.
2019.PubMed/NCBI
|
34
|
Li X, Zhao H, Wang Q, Liang H and Jiang X:
Fucoidan protects ARPE-19 cells from oxidative stress via
normalization of reactive oxygen species generation through the
Ca2+-dependent ERK signaling pathway. Mol Med Rep.
11:3746–3752. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Giddabasappa A, Bauler MN, Barrett CM,
Coss CC, Wu Z, Miller DD, Dalton JT and Eswaraka JR: GTx-822, an
ER{beta}-selective agonist, protects retinal pigment epithelium
(ARPE-19) from oxidative stress by activating MAPK and PI3-K
pathways. Invest Ophthalmol Vis Sci. 51:5934–5942. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Dunn KC, Aotaki-Keen AE, Putkey FR and
Hjelmeland LM: ARPE-19, a human retinal pigment epithelial cell
line with differentiated properties. Exp Eye Res. 62:155–169. 1996.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Olayioye MA: Intracellular signaling
pathways of ErbB2/HER-2 and family members. Breast Cancer Res.
3:385–389. 2001. View
Article : Google Scholar : PubMed/NCBI
|
38
|
Jeltsch M, Leppänen VM, Saharinen P and
Alitalo K: Receptor tyrosine kinase-mediated angiogenesis. Cold
Spring Harb Perspect Biol. 5:a0091832013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Jahejo AR, Niu S, Zhang D, Ning GB, Khan
A, Mangi RA, Qadir MF, Khan A, Li JH and Tian WX: Transcriptome
analysis of MAPK signaling pathway and associated genes to
angiogenesis in chicken erythrocytes on response to thiram-induced
tibial lesions. Res Vet Sci. 127:65–75. 2019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Liang X, Ding Y, Zhang Y, Chai YH, He J,
Chiu SM, Gao F, Tse HF and Lian Q: Activation of NRG1-ERBB4
signaling potentiates mesenchymal stem cell-mediated myocardial
repairs following myocardial infarction. Cell Death Dis.
6:e17652015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Selvendiran K, Bratasz A, Kuppusamy ML,
Tazi MF, Rivera BK and Kuppusamy P: Hypoxia induces chemoresistance
in ovarian cancer cells by activation of signal transducer and
activator of transcription 3. Int J Cancer. 125:2198–2204. 2009.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Wang GS, Qian GS, Zhou DS and Zhao JQ:
JAK-STAT signaling pathway in pulmonary arterial smooth muscle
cells is activated by hypoxia. Cell Biol Int. 29:598–603. 2005.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Zhang H, He S, Spee C, Ishikawa K and
Hinton DR: SIRT1 mediated inhibition of VEGF/VEGFR2 signaling by
Resveratrol and its relevance to choroidal neovascularization.
Cytokine. 76:549–552. 2015. View Article : Google Scholar : PubMed/NCBI
|