1
|
Banchereau J and Steinman RM: Dendritic
cells and the control of immunity. Nature. 392:245–252. 1998.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Randolph GJ, Ochando J and Patrida-Sánchez
S: Migration of dendritic cell subsets and their precursors. Annu
Rev Immunol. 26:293–316. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Dunn GP, Koebel CM and Schreiber RD:
Interferons, immunity and cancer immunoediting. Nat Rev Immunol.
6:836–848. 2006. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Lipscomb MF and Masten BJ: Dendrititc
cells: Immune regulators in health and disease. Physiol Rev.
82:97–130. 2002. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sennikov SV, Obleukhova IA, Kurilin VV,
Kulikova EV and Khristin AA: Features of functional activity of
dendritic cells in tumor growth. Vopr Onkol. 61:556–62.
2015.PubMed/NCBI
|
6
|
Bol KF, Schreibelt G, Gerritsen WR, de
Vries IJ and Figdor CG: Dendritic cell-based immunotherapy: State
of the art and beyond. Clin Cancer Res. 22:1897–1906. 2016.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Kim R, Emi M, Tanabe K and Arihiro K:
Tumor-driven evolution of immunosuppressive networks during
malignant progression. Cancer Res. 66:5527–5536. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
deVries IJ, Eggert AA, Scharenborg NM,
Vissers JL, Lesterhuis WJ, Boerman OC, Punt CJ, Adema GJ and Figdor
CG: Phenotypical and functional characterization of clinical grade
dendritic cells. J Immunother. 25:429–38. 2002. View Article : Google Scholar : PubMed/NCBI
|
9
|
Koski GK, Cohen PA, Roses RE, Xu S and
Czerniecki BJ: Reengineering dendritic cell-based anti-cancer
vaccines. Immunol Rev. 222:256–276. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Huang A, Gilmour JW, Imami N, Amjadi P,
Henderson DC and Allen-Mersh TG: Increased serum transforming
growth factor-beta1 in human colorectal cancer correlates with
reduced circulating dendritic cells and increased colonic
Langerhans cell infiltration. Clin Exp Immunol. 134:270–278. 2003.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Lissoni P, Malugani F, Bonfanti A, Bucovec
R, Secondino S, Brivio F, Ferrari-Bravo A, Ferrante R, Vigoré L,
Rovelli F, et al: Abnormally enhanced blood concentrations of
vascular endothelial growth factor (VEGF) in metastatic cancer
patients and their relation to circulating dendritic cells, IL-12
and endothelin-1. J Biol Regul Homeost Agents. 15:140–144.
2001.PubMed/NCBI
|
12
|
Vetsika EK, Koinis F, Gioulbasani M,
Aggouraki D, Koutoulaki A, Skalidaki E, Mavroudis D, Georgoulias V
and Kotsakis A: Сirculating subpopulation of monocytic
myeloid-derived suppressor cells as an independent
prognostic/predictive factor in untreated non-small lung cancer
patients. J Immunol Res. 2014:6592942014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Liu X, Zhang H, Su L, Yang P, Xin Z, Zou
J, Ren S and Zuo Y: Low expression of dendritic cell-specific
intercellular adhesion molecule-grabbing nonintegrin-related
protein in lung cancer and significant correlations with brain
metastasis and natural killer cells. Mol Cell Biochem. 407:151–160.
2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Domingues D, Turner A, Silva MD, Marques
DS, Mellidez JC, Wannesson L, Mountzios G and de Mello RA:
Immunotherapy and lung cancer: Current developments and novel
targeted therapies. Immunotherapy. 6:1221–1235. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
deVries IJ, Lesterhuis WJ, Scharenborg NM,
Engelen LP, Ruiter DJ, Gerritsen MJ, Croockewit S, Britten CM,
Torensma R, Adema GJ, et al: Maturation of dendritic cells is a
prerequisite for inducing immune responses in advanced melanoma
patients. Clin Cancer Res. 9:5091–5100. 2003.PubMed/NCBI
|
16
|
Stagg AJ, Hart AL, Knight SC and Kamm MA:
The dendritic cell: Its role in intestional inflammation and
relationship with gut bacteria. Gut. 52:1522–1529. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Dieu MC, Vanbervliet B, Vicari A, Bridon
JM, Oldham E, Aït-Yahia S, Brière F, Zlotnik A, Lebecque S and Caux
C: Selective recruitment of immature and mature dendritic cells by
distinct chemokines expressed in different anatomic sites. J Exp
Med. 188:373–386. 1998. View Article : Google Scholar : PubMed/NCBI
|
18
|
Jarnjak-Jankovic S, Hammerstad H,
Sabbøe-Larssen S, Kvalheim G and Gaudernack G: A full scale
comparative study of methods for generation of functional Dendritic
cells for use as cancer vaccines. BMC Cancer. 7:1192007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bykovskaia SN, Buffo M, Zhang H, Bunker M,
Levitt ML, Agha M, Marks S, Evans C, Ellis P, Shurin MR and Shogan
J: The generation of human dendritic and NK cells from hemopoietic
progenitors induced by interleukin-15. J Leukoc Biol. 66:659–666.
1999.PubMed/NCBI
|
20
|
Dauer M, Obermaier B, Herten J, Haerle C,
Pohl K, Rothenfusser S, Schnurr M, Endres S and Eigler A: Mature
dendritic cells derived from human monocytes within 48 h: A novel
strategy for dendritic cell differentiation from blood precursors.
J Immunol. 170:4069–4076. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kulikova EV, Kurilin VV, Shevchenko JA,
Obleukhova IA, Khrapov EA, Boyarskikh UA, Filipenko ML, Shorokhov
RV, Yakushenko VK, Sokolov AV and Sennikov SV: Dendritic cells
transfected with a DNA construct encoding tumor-associated antigen
epitopes induce a cytotoxic immune response against autologous
tumor cells in a culture of mononuclear cells from colorectal
cancer patients. Scand J Immunol. 82:110–117. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Leplina OY, Stupak VV, Kozlov YP,
Pendyurin IV, Nikonov SD, Tikhonova MA, Sycheva NV, Ostanin AA and
Chernykh ER: Use of interferon-alpha-induced dendritic cells in the
therapy of patients with malignant brain gliomas. Bull Exp Biol
Med. 143:528–534. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Obleukhova IA, Kurilin VV, Goncharov MA,
Tarkhov AV, Krasil'nikov SE and Sennikov SV: Effect of mature
dendritic cells primed with autologous tumor antigens from patients
with epithelial ovarian cancer on stimulation of the cytotoxic
immune response in culture of mononuclear cells. Bull Exp Biol Med.
156:161–164. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Almand B, Resser JR, Lindman B, Nadaf S,
Clark JI, Kwon ED, Carbone DP and Gabrilovich DI: Clinical
significance of defective dendritic cell differentiation in cancer.
Clin Cancer Res. 6:1755–1766. 2000.PubMed/NCBI
|
25
|
Ruben JM, Bontkes HJ, Westers TM,
Hooijberg E, Ossenkoppele GJ, de Gruijl TD and van de Loosdrecht
AA: Differential capacity of human interleukin-4 and interferon-α
monocyte-derived dendritic cells for cross-presentation of free
versus cell-associated antigen. Cancer Immunol Immunother.
64:1419–1427. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Almand В, Clark JI, Nikitina E, van Beynen
J, English NR, Knight SC, Carbone DP and Gabrilovich DI: Increased
production of immature myeloid cells in cancer patients: A
mechanism of immunosuppression in cancer. J Immunol. 166:678–689.
2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Palucka K and Banchereau J: Cancer
immunotherapy via dendritic cells. Nat Rev Cancer. 12:265–277.
2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Türeci Ö, Vormehr M, Diken M, Kreiter S,
Huber C and Sahin U: Targeting the heterogeneity of cancer with
individualized neoepitope vaccines. Clin Cancer Res. 22:1885–1896.
2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Markiewicz MA and Kast WM: Progress in the
development of immunotherapy of cancer using ex vivo-generated
dendritic cells expressing multiple tumor antigen epitopes. Cancer
Invest. 22:417–434. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sennikov SV, Kulikova E, Obleukhova IA and
Shevchenko JA: Technologies of cellular antitumor immune response
induction in vitro. Genes Cells. 10:16–22. 2015.
|
31
|
Sennikov SV, Shevchenko JA, Kurilin VV,
Khantakova JN, Lopatnikova JA, Gavrilova EV, Maksyutov RA, Bakulina
AY, Sidorov SV, Khristin AA and Maksyutov AZ: Induction of an
antitumor response using dendritic cells transfected with DNA
constructs encoding the HLA-A*02:01-restricted epitopes of
tumor-associated antigens in culture of mononuclear cells of breast
cancer patients. Immunol Res. 64:171–180. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Robson NC, Hoves S, Maraskovsky E and
Schnurr M: Presentation of tumour antigens by dendritic cells and
challenges faced. Curr Opin Immunol. 22:137–144. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Delirezh N, Moazzeni SM, Shokri F,
Shokrgozar MA, Atri M and Kokhaei P: Autologous dendritic cells
loaded with apoptotic tumor cells induce T cell-mediated immune
responses against breast cancer in vitro. Cellular Immunol.
257:23–31. 2009. View Article : Google Scholar
|
34
|
Galluzzi L, Senovilla L, Vacchelli E,
Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E,
Zitvogel L and Kroemer G: Trial watch. Dendritic cell-based
interventions for cancer therapy. OncoImmunology. 1:1111–1134.
2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hargadon KM: Tumor-altered dendritic cell
function: Implications for antitumor immunity. Front Immunol.
4:1922013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chang AE, Redman BG, Whitfield JR,
Nickoloff BJ, Braun TM, Lee PP, Geiger JD and Mulé JJ: A phase i
trial of tumor lysate-pulsed dendritic cells in the treatment of
advanced cancer. Clin Cancer Res. 8:1021–1032. 2002.PubMed/NCBI
|
37
|
Win SJ, McMillan DG, Errington-Mais F,
Ward VK, Young SL, Baird MA and Melcher AA: Enhancing the
immunogenicity of tumour lysate-loaded dendritic cell vaccines by
conjugation to virus-like particles. British J Cancer. 106:92–98.
2012. View Article : Google Scholar
|
38
|
Dong B, Dai G, Xu L, Zhang Y, Ling L, Sun
L and Lv J: Tumor cell lysate induces the immunosuppression and
apoptosis of mouse Immunocytes. Mol Med Rep. 10:2827–2834. 2014.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Gilboa E and Vieweg J: Cancer
immunotherapy with mRNA-transfected dendritic cells. Immunol Rev.
199:251–63. 2004. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kreiter S, Diken M, Selmi A, Türeci Ö and
Sahin U: Tumor vaccination using messenger RNA: Prospects of a
future therapy. Curr Opin Immunol. 23:399–406. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Degli-Esposti MA and Smyth MJ: Close
encounters of different kinds: Dendritic cells and NK cells take
centre stage. Nat Rev Immunol. 5:112–124. 2005. View Article : Google Scholar : PubMed/NCBI
|
42
|
Bernhard H, Neudorfer J, Gebhard K, Conrad
H, Hermann C, Nährig J, Fend F, Weber W, Busch DH and Peschel C:
Adoptive transfer of autologous, HER2-specific, cytotoxic T
lymphocytes for the treatment of HER2-overexpressing breast cancer.
Cancer Immunol Immunother. 57:271–280. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Gelao L, Criscitiello C, Esposito A, De
Laurentiis M, Fumagalli L, Locatelli MA, Minchella I, Santangelo M,
De Placido S, Goldhirsch A and Curigliano G: Dendritic cell-based
vaccines: Clinical applications in breast cancer. Immunotherapy.
6:349–360. 2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Cullen SP, Brunet M and Martin SJ:
Granzymes in cancer and immunity. Cell Death Differ. 17:616–623.
2010. View Article : Google Scholar : PubMed/NCBI
|
45
|
Smyth MJ, Kelly JM, Sutton VR, Davis JE,
Browne KA, Sayers TJ and Trapani JA: Unlocking the secrets of
cytotoxic granule proteins. J Leukoc Biol. 70:18–29.
2001.PubMed/NCBI
|
46
|
Walczak H and Krammer PH: The CD95
(APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res.
256:58–66. 2000. View Article : Google Scholar : PubMed/NCBI
|
47
|
Poehlein CH, Hu HM, Yamada J, Assmann I,
Alvord WG, Urba WJ and Fox BA: TNF plays an essential role in tumor
regression after adoptive transfer of perforin/IFN-gamma double
knockout effector T cells. J Immunol. 170:2004–2013. 2003.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Henkler F, Behrle E, Dennehy KM, Wicovsky
A, Peters N, Warnke C, Pfizenmaier K and Wajant H: The
extracellular domains of FasL and Fas are sufficient for the
formation of supramolecular FasL-Fas clusters of high stability. J
Cell Biol. 168:1087–1098. 2005. View Article : Google Scholar : PubMed/NCBI
|
49
|
Rahman M, Davis SR, Pumphrey JG, Bao J,
Nau MM, Meltzer PS and Lipkowitz S: TRAIL induces apoptosis in
triple-negative breast cancer cells with a mesenchymal phenotype.
Breast Cancer Res Treat. 113:217–230. 2009. View Article : Google Scholar : PubMed/NCBI
|
50
|
Stuckey DW and Shah K: TRAIL on trial:
Preclinical advances for cancer therapy. Trends Mol Med.
19:685–694. 2013. View Article : Google Scholar : PubMed/NCBI
|