1
|
Bandyopadhyay A, Wang L, Agyin J, Tang Y,
Lin S, Yeh IT, De K and Sun LZ: Doxorubicin in combination with a
small TGFbeta inhibitor: A potential novel therapy for metastatic
breast cancer in mouse models. PLoS One. 5:e103652010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bailey CE, Hu CY and You N: Increase in
incidence of colorectal cancer in young adults, rates expected to
rise. JAMA Surg. 2014, (early release online). PubMed/NCBI
|
3
|
Ferlay J, Soerjomataram I, Ervik M,
Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and
Bray F: GLOBOCAN 2012 v1.0, cancer incidence and mortality
worldwide. IARC Cancer Base No. 11 [Internet]. Lyon, France;
International Agency for Research on Cancer; 2013
|
4
|
Siegel R, Desantis C and Jemal A:
Colorectal cancer statistics. 2014. CA Cancer J Clin. 64:104–117.
2014. View Article : Google Scholar
|
5
|
Das V, Kalita J and Pal M: Predictive and
prognostic biomarkers in colorectal cancer: A systematic review of
recent advances and challenges. Biomed Pharmacother. 87:8–19. 2017.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Hardcastle JD, Chamberlain JO, Robinson
MH, Moss SM, Amar SS, Balfour TW, James PD and Mangham CM:
Randomised controlled trial of faecal-occult-blood screening for
colorectal cancer. Lancet. 348:1472–1477. 1996. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kronborg O, Jørgensen OD, Fenger C and
Rasmussen M: Randomized study of biennial screening witha faecal
occult blood test: Results after nine screening rounds. Scand J
Gastroenterol. 39:846–851. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Mandel JS, Church TR, Ederer F and Bond
JH: Colorectal cancer mortality: Effectiveness of biennialscreening
for fecal occult blood. J Natl Cancer Inst. 91:434–437. 1999.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Hewitson P, Glasziou P, Watson E, Towler B
and Irwig L: Cochrane systematic review of colorectalcancer
screening using the fecal occult blood test (Hemoccult): An update.
Am J Gastroenterol. 103:1541–1549. 2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Timp W and Feinberg AP: Cancer as a
dysregulated epigenome allowing cellular growth advantage at the
expense of the host. Nat Rev Cancer. 13:497–510. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Dawson MA and Kouzarides T: Cancer
epigenetics: From mechanism to therapy. Cell. 150:12–27. 2012.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Ling JQ and Hoffman AR: Epigenetics of
long-range chromatin interactions. Pediatr Res. 61:R11–R16. 2007.
View Article : Google Scholar
|
13
|
Low D, Mizoguchi A and Mizoguchi E: DNA
methylation in inflammatory bowel disease and beyond. World J
Gastroenterol. 19:5238–5249. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kim SK, Jang HR, Kim JH, Noh SM, Song KS,
Kim MR, Kim SY, Yeom YI, Kim NS, Yoo HS and Kim YS: The epigenetic
silencing of LIMS2 in gastric cancer and its inhibitory effect on
cell migration. Biochem Biophys Res Commun. 349:1032–1040. 2006.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Dai Y, Duan H, Duan C, Zhou R, He Y, Tu Q
and Shen L: Down-regulation of TCF21 by hypermethylation induces
cell proliferation, migration andinvasion in colorectal cancer.
Biochem Biophys Res Commun. 469:430–436. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Bernstein BE, Kamal M, Lindblad-Toh K,
Bekiranov S, Bailey DK, Huebert DJ, McMahon S, Karlsson EK,
Kulbokas EJ III, Gingeras TR, et al: Genomic maps and comparative
analysis of histone modifications in human and mouse. Cell.
120:169–181. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Heintzman ND, Stuart RK, Hon G, Fu Y,
Ching CW, Hawkins RD, Barrera LO, van Calcar S, Qu C, Ching KA, et
al: Distinct and predictive chromatin signatures of transcriptional
promoters and enhancers in the human genome. Nat Genet. 39:311–318.
2007. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Kim TH, Barrera LO, Zheng M, Qu C, Singer
MA, Richmond TA, Wu Y, Green RD and Ren B: A high-resolution map of
active promoters in the human genome. Nature. 436:876–880. 2005.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Ellinger J, Kahl P, Mertens C, Rogenhofer
S, Hauser S, Hartmann W, Bastian PJ, Büttner R, Müller SC and von
Ruecker A: Prognostic relevance of global histone H3 lysine 4
(H3K4) methylation in renal cell carcinoma. Int J Cancer.
127:2360–2366. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ellinger J, Kahl P, von der Gathen J,
Rogenhofer S, Heukamp LC, Gütgemann I, Walter B, Hofstädter F,
Büttner R, Müller SC, et al: Global levels of histone modifications
predict prostate cancer recurrence. Prostate. 70:61–69. 2010.
View Article : Google Scholar : PubMed/NCBI
|
21
|
He C, Xu J, Zhang J, Xie D, Ye H, Xiao Z,
Cai M, Xu K, Zeng Y, Li H and Wang J: High expression of
trimethylated histone H3 lysine 4 is associated with poor prognosis
in hepatocellular carcinoma. Hum Pathol. 43:1425–1435. 2012.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Ke XS, Qu Y, Rostad K, Li WC, Lin B,
Halvorsen OJ, Haukaas SA, Jonassen I, Petersen K, Goldfinger N, et
al: Genome-wide profiling of histone h3 lysine 4 and lysine 27
trimethylation reveals an epigenetic signature in prostate
carcinogenesis. PLoS One. 4:e46872009. View Article : Google Scholar : PubMed/NCBI
|
23
|
McDonald OG, Wu H, Timp W, Doi A and
Feinberg AP: Genome-scale epigenetic reprogramming during
epithelial-to-mesenchymal transition. Nat Struct Mol Biol.
18:867–874. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Salz T, Li G, Kaye FJ, Zhou L, Qiu Y and
Huang S: hSETD1A regulates Wnt target genes and controls tumor
growth of colorectal cancer cells. Cancer Res. 74:775–786. 2014.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Kim JH, Sharma A, Dhar SS, Lee SH, Gu B,
Chan CH, Lin HK and Lee MG: UTX and MLL4 coordinately regulate
transcriptional programs for cell proliferation and invasiveness in
breast cancer cells. Cancer Res. 74:1705–1717. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Akhtar-Zaidi B, Cowper-Sal-lari R,
Corradin O, Saiakhova A, Bartels CF, Balasubramanian D, Myeroff L,
Lutterbaugh J, Jarrar A, Kalady MF, et al: Epigenomic enhancer
profiling defines a signature of colon cancer. Science.
336:736–739. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Shilatifard A: The COMPASS family of
histone H3K4 methylases: Mechanisms of regulation in development
and disease pathogenesis. Annu Rev Biochem. 81:65–95. 2012.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Lee JH, Tate CM, You JS and Skalnik DG:
Identification and characterization of the human Set1B histone
H3-Lys4 methyltransferase complex. J Biol Chem. 282:13419–13428.
2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lee JH and Skalnik DG: WDR82 is a
C-terminal domain-binding protein that recruits the Setd1A Histone
H3-Lys4 methyltransferase complex to transcription start sites of
transcribed human genes. Mol Cell Biol. 28:609–618. 2008.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhang L, Ye SB, Ma G, Tang XF, Chen SP, He
J, Liu WL, Xie D, Zeng YX and Li J: The expressions of MIF and
CXCR4 protein in tumor microenvironment are adverseprognostic
factors in patients with esophageal squamous cell carcinoma. J
Transl Med. 11:602013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Pasini D, Hansen KH, Christensen J, Agger
K, Cloos PA and Helin K: Coordinated regulation of transcriptional
repression by the RBP2 H3K4 demethylase and Polycomb-Repressive
Complex 2. Genes Dev. 22:1345–1355. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Edge SB and Compton CC: The American Joint
Committee on Cancer: The 7th edition of the AJCC cancer staging
manual and the future of TNM. Ann Surg Oncol. 17:1471–1474. 2010.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Feng B, Zheng MH, Zheng YF, Lu AG, Li JW,
Wang ML, Ma JJ, Xu GW, Liu BY and Zhu ZG.: Normal and modified
urinary nucleosides represent novel biomarkers for colorectal
cancer diagnosis and surgery monitoring. J Gastroenterol Hepatol.
20:1913–1919. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Murray K: The occurrence of iε-N-Methyl
lysine in histones. Biochemistry 127: 10–15, 1964. Lachner M,
O'Sullivan RJ and Jenuwein T: An epigenetic road map for histone
lysine methylation. J Cell Sci. 116:2117–2124. 2003.
|
35
|
Peterson CL and Laniel MA: Histones and
histone modifications. Curr Biol 14: R546–R551, 2004. Rea S,
Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S,
Mechtler K, Ponting CP, Allis CD and Jenuwein T: Regulation of
chromatin structure by site-specific histone H3 methyltransferases.
Nature. 406:593–599. 2000.PubMed/NCBI
|
36
|
Jenuwein T, Laible G, Dorn R and Reuter G:
SET domain proteins modulate chromatin domains in eu- and
heterochromatin. Cell Mol Life Sci. 54:80–93. 1998. View Article : Google Scholar : PubMed/NCBI
|
37
|
Krogan NJ, Dover J, Khorrami S, Greenblatt
JF, Schneider J, Johnston M and Shilatifard A: COMPASS, a histone
H3 (Lysine 4) methyltransferase required for telomeric silencing of
gene expression. J Biol Chem. 277:10753–10755. 2002. View Article : Google Scholar : PubMed/NCBI
|
38
|
Briggs SD, Bryk M, Strahl BD, Cheung WL,
Davie JK, Dent SY, Winston F and Allis CD: Histone H3 lysine 4
methylation is mediated by Set1 and required for cell growth and
rDNA silencing in Saccharomyces cerevisiae. Genes Dev.
15:3286–3295. 2001. View Article : Google Scholar : PubMed/NCBI
|
39
|
Santos-Rosa H, Schneider R, Bannister AJ,
Sherriff J, Bernstein BE, Emre NC, Schreiber SL, Mellor J and
Kouzarides T: Active genes are tri-methylated at K4 of histone H3.
Nature. 419:407–411. 2002. View Article : Google Scholar : PubMed/NCBI
|
40
|
Nagy PL, Griesenbeck J, Kornberg RD and
Cleary ML: A trithorax-group complex purified from Saccharomyces
cerevisiae is required for methylation of histone H3. Proc Natl
Acad Sci USA. 99:90–94. 2002. View Article : Google Scholar : PubMed/NCBI
|
41
|
Roguev A, Schaft D, Shevchenko A,
Pijnappel WWMP, Wilm M, Aasland R and Stewart AF: The Saccharomyces
cerevisiae Set1 complex includes an Ash2 homologue and methylates
histone 3 lysine 4. EMBO J. 20:7137–7148. 2001. View Article : Google Scholar : PubMed/NCBI
|
42
|
Alicea-Velázquez NL, Shinsky SA, Loh DM,
Lee JH, Skalnik DG and Cosgrove MS: Targeted disruption of the
interaction between WD-40 repeat protein 5 (WDR5) and mixed lineage
leukemia (MLL)/SET1 family proteins specifically inhibits MLL1 and
SETd1A Methyltransferase complexes. J Biol Chem. 291:22357–22372.
2016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Tajima K, Yae T, Javaid S, Tam O, Comaills
V, Morris R, Wittner BS, Liu M, Engstrom A, Takahashi F, et al:
SETD1A modulates cell cycle progression through a miRNA network
that regulates p53 target genes. Nat Commun. 6:82572015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Sahlberg SH, Spiegelberg D, Glimelius B,
Stenerlöw B and Nestor M: Evaluation of cancer stem cell markers
CD133, CD44, CD24: Association with AKT isoforms and radiation
resistance in colon cancer cells. PLoS One. 9:e946212014.
View Article : Google Scholar : PubMed/NCBI
|