1
|
Xia C, Dong X, Li H, Cao M, Sun D, He S,
Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China
and United States, 2022: Profiles, trends, and determinants. Chin
Med J (Engl). 135:584–590. 2022. View Article : Google Scholar : PubMed/NCBI
|
2
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Rahib L, Smith BD, Aizenberg R, Rosenzweig
AB, Fleshman JM and Matrisian LM: Projecting cancer incidence and
deaths to 2030: The unexpected burden of thyroid, liver, and
pancreas cancers in the United States. Cancer Res. 74:2913–2921.
2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Spill F, Reynolds DS, Kamm RD and Zaman
MH: Impact of the physical microenvironment on tumor progression
and metastasis. Curr Opin Biotechnol. 40:41–48. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wang S, Li Y, Xing C, Ding C, Zhang H,
Chen L, You L, Dai M and Zhao Y: Tumor microenvironment in
chemoresistance, metastasis and immunotherapy of pancreatic cancer.
Am J Cancer Res. 10:1937–1953. 2020.PubMed/NCBI
|
6
|
Hinshaw DC and Shevde LA: The tumor
microenvironment innately modulates cancer progression. Cancer Res.
79:4557–4566. 2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Fu X, Sun G, Tu S, Fang K, Xiong Y, Tu Y,
Zha M, Xiao T and Xiao W: Hsa_circ_0046523 mediates an
immunosuppressive tumor microenvironment by regulating
MiR-148a-3p/PD-L1 axis in pancreatic cancer. Front Oncol.
12:8773762022. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kaneda MM, Messer KS, Ralainirina N, Li H,
Leem CJ, Gorjestani S, Woo G, Nguyen AV, Figueiredo CC, Foubert P,
et al: PI3Kγ is a molecular switch that controls immune
suppression. Nature. 539:437–442. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kabashima A, Matsuo Y, Ito S, Akiyama Y,
Ishii T, Shimada S, Masamune A, Tanabe M and Tanaka S: cGAS-STING
signaling encourages immune cell overcoming of fibroblast
barricades in pancreatic cancer. Sci Rep. 12:104662022. View Article : Google Scholar : PubMed/NCBI
|
10
|
Lefler JE, MarElia-Bennett CB, Thies KA,
Hildreth BE III, Sharma SM, Pitarresi JR, Han L, Everett C,
Koivisto C, Cuitino MC, et al: STAT3 in tumor fibroblasts promotes
an immunosuppressive microenvironment in pancreatic cancer. Life
Sci Alliance. 5:e2022014602022. View Article : Google Scholar : PubMed/NCBI
|
11
|
Nejati R, Goldstein JB, Halperin DM, Wang
H, Hejazi N, Rashid A, Katz MH, Lee JE, Fleming JB,
Rodriguez-Canales J, et al: Prognostic significance of
tumor-infiltrating lymphocytes in patients with pancreatic ductal
adenocarcinoma treated with neoadjuvant chemotherapy. Pancreas.
46:1180–1187. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hivroz C, Chemin K, Tourret M and
Bohineust A: Crosstalk between T lymphocytes and dendritic cells.
Crit Rev Immunol. 32:139–155. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wang T, Niu G, Kortylewski M, Burdelya L,
Shain K, Zhang S, Bhattacharya R, Gabrilovich D, Heller R, Coppola
D, et al: Regulation of the innate and adaptive immune responses by
Stat-3 signaling in tumor cells. Nat Med. 10:48–54. 2004.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Orhan A, Vogelsang RP, Andersen MB, Madsen
MT, Hölmich ER, Raskov H and Gögenur I: The prognostic value of
tumour-infiltrating lymphocytes in pancreatic cancer: a systematic
review and meta-analysis. Eur J Cancer. 132:71–84. 2020. View Article : Google Scholar : PubMed/NCBI
|
15
|
Biswas SK and Mantovani A: Macrophage
plasticity and interaction with lymphocyte subsets: Cancer as a
paradigm. Nat Immunol. 11:889–896. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Hu L, Zhu M, Shen Y, Zhong Z and Wu B: The
prognostic value of intratumoral and peritumoral tumor-infiltrating
FoxP3+Treg cells in of pancreatic adenocarcinoma: A meta-analysis.
World J Surg Oncol. 19:3002021. View Article : Google Scholar : PubMed/NCBI
|
17
|
Thompson RH, Dong H, Lohse CM, Leibovich
BC, Blute ML, Cheville JC and Kwon ED: PD-1 is expressed by
tumor-infiltrating immune cells and is associated with poor outcome
for patients with renal cell carcinoma. Clin Cancer Res.
13:1757–1761. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ahmadzadeh M, Johnson LA, Heemskerk B,
Wunderlich JR, Dudley ME, White DE and Rosenberg SA: Tumor
antigen-specific CD8 T cells infiltrating the tumor express high
levels of PD-1 and are functionally impaired. Blood. 114:1537–1544.
2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Nomi T, Sho M, Akahori T, Hamada K, Kubo
A, Kanehiro H, Nakamura S, Enomoto K, Yagita H, Azuma M and
Nakajima Y: Clinical significance and therapeutic potential of the
programmed death-1 ligand/programmed death-1 pathway in human
pancreatic cancer. Clin Cancer Res. 13:2151–2157. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Court CM and Hines OJ: The new American
joint committee on cancer TNM staging system for pancreatic
cancer-balancing usefulness with prognostication. JAMA Surg.
153:e1836292018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang X, Teng F, Kong L and Yu J: PD-L1
expression in human cancers and its association with clinical
outcomes. Onco Targets Ther. 12:5023–5039. 2016.PubMed/NCBI
|
22
|
Shi F, Shi M, Zeng Z, Qi RZ, Liu ZW, Zhang
JY, Yang YP, Tien P and Wang FS: PD-1 and PD-L1 upregulation
promotes CD8(+) T-cell apoptosis and postoperative recurrence in
hepatocellular carcinoma patients. Int J Cancer. 128:887–896. 2011.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Ino Y, Yamazaki-Itoh R, Shimada K, Iwasaki
M, Kosuge T, Kanai Y and Hiraoka N: Immune cell infiltration as an
indicator of the immune microenvironment of pancreatic cancer. Br J
Cancer. 108:914–923. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Reading JL, Gálvez-Cancino F, Swanton C,
Lladser A, Peggs KS and Quezada SA: The function and dysfunction of
memory CD8+ T cells in tumor immunity. Immunol Rev.
283:194–212. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Shrihari TG: Innate and adaptive immune
cells in Tumor microenvironment. Gulf J Oncolog. 1:77–81. 2021.
|
26
|
Tang Y, Xu X, Guo S, Zhang C, Tang Y, Tian
Y, Ni B, Lu B and Wang H: An increased abundance of
tumor-infiltrating regulatory T cells is correlated with the
progression and prognosis of pancreatic ductal adenocarcinoma. PLoS
One. 9:e915512014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Masugi Y, Abe T, Ueno A, Fujii-Nishimura
Y, Ojima H, Endo Y, Fujita Y, Kitago M, Shinoda M, Kitagawa Y and
Sakamoto M: Characterization of spatial distribution of
tumor-infiltrating CD8+ T cells refines their prognostic
utility for pancreatic cancer survival. Mod Pathol. 32:1495–1507.
2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Karakhanova S, Ryschich E, Mosl B, Harig
S, Jäger D, Schmidt J, Hartwig W, Werner J and Bazhin AV:
Prognostic and predictive value of immunological parameters for
chemoradioimmunotherapy in patients with pancreatic adenocarcinoma.
Br J Cancer. 112:1027–1036. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
de Vos van Steenwijk PJ, Ramwadhdoebe TH,
Goedemans R, Doorduijn EM, van Ham JJ, Gorter A, van Hall T,
Kuijjer ML, van Poelgeest MI, van der Burg SH and Jordanova ES:
Tumor-infiltrating CD14-positive myeloid cells and CD8-positive
T-cells prolong survival in patients with cervical carcinoma. Int J
Cancer. 133:2884–2894. 2013.PubMed/NCBI
|
30
|
Preston CC, Maurer MJ, Oberg AL, Visscher
DW, Kalli KR, Hartmann LC, Goode EL and Knutson KL: The ratios of
CD8+ T cells to CD4+CD25+
FOXP3+ and FOXP3-T cells correlate with poor clinical
outcome in human serous ovarian cancer. PLoS One. 8:e800632013.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Timperi E, Pacella I, Schinzari V,
Focaccetti C, Sacco L, Farelli F, Caronna R, Del Bene G, Longo F,
Ciardi A, et al: Regulatory T cells with multiple suppressive and
potentially pro-tumor activities accumulate in human colorectal
cancer. Oncoimmunology. 5:e11758002016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Revilla SA, Kranenburg O and Coffer PJ:
Colorectal cancer-infiltrating regulatory T cells: Functional
heterogeneity, metabolic adaptation, and therapeutic targeting.
Front Immunol. 13:9035642022. View Article : Google Scholar : PubMed/NCBI
|
33
|
Itahashi K, Irie T and Nishikawa H:
Regulatory T-cell development in the tumor microenvironment. Eur J
Immunol. 52:1216–1227. 2022. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhang Y, Lazarus J, Steele NG, Yan W, Lee
HJ, Nwosu ZC, Halbrook CJ, Menjivar RE, Kemp SB and Sirihorachai
VR: Regulatory T-cell depletion alters the tumor microenvironment
and accelerates pancreatic carcinogenesis. Cancer Discov.
10:422–439. 2020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Saka D, Gökalp M, Piyade B, Cevik NC,
Sever EA, Unutmaz D, Ceyhan GO, Demir IE and Asimgil H: Mechanisms
of T-cell exhaustion in pancreatic cancer. Cancers (Basel).
12:22742020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kampan NC, Madondo MT, McNally OM,
Stephens AN, Quinn MA and Plebanski M: Interleukin 6 present in
inflammatory ascites from advanced epithelial ovarian cancer
patients promotes tumor necrosis factor receptor 2-expressing
regulatory T cells. Front Immunol. 8:14822017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Woo EY, Chu CS, Goletz TJ, Schlienger K,
Yeh H, Coukos G, Rubin SC, Kaiser LR and June CH: Regulatory
CD4(+)CD25(+) T cells in tumors from patients with early-stage
non-small cell lung cancer and late-stage ovarian cancer. Cancer
Res. 61:4766–4772. 2001.PubMed/NCBI
|
38
|
Jiang Y, Du Z, Yang F, Di Y, Li J, Zhou Z,
Pillarisetty VG and Fu D: FOXP3+ lymphocyte density in pancreatic
cancer correlates with lymph node metastasis. PLoS One.
9:e1067412014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Liu L, Zhao G, Wu W, Rong Y, Jin D, Wang
D, Lou W and Qin X: Low intratumoral regulatory T cells and high
peritumoral CD8(+) T cells relate to long-term survival in patients
with pancreatic ductal adenocarcinoma after pancreatectomy. Cancer
Immunol Immunother. 65:73–82. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Steele NG, Carpenter ES, Kemp SB,
Sirihorachai VR, The S, Delrosario L, Lazarus J, Amir ED, Gunchick
V, Espinoza C, et al: Multimodal mapping of the tumor and
peripheral blood immune landscape in human pancreatic cancer. Nat
Cancer. 1:1097–1112. 2020. View Article : Google Scholar : PubMed/NCBI
|
41
|
Schizas D, Charalampakis N, Kole C,
Economopoulou P, Koustas E, Gkotsis E, Ziogas D, Psyrri A and
Karamouzis MV: Immunotherapy for pancreatic cancer: A 2020 update.
Cancer Treat Rev. 86:1020162020. View Article : Google Scholar : PubMed/NCBI
|
42
|
Feng M, Xiong G, Cao Z, Yang G, Zheng S,
Song X, You L, Zheng L, Zhang T and Zhao Y: PD-1/PD-L1 and
immunotherapy for pancreatic cancer. Cancer Lett. 407:57–65. 2017.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Liang X, Sun J, Wu H, Luo Y, Wang L, Lu J,
Zhang Z, Guo J, Liang Z and Liu T: PD-L1 in pancreatic ductal
adenocarcinoma: A retrospective analysis of 373 Chinese patients
using an in vitro diagnostic assay. Diagn Pathol. 13:52018.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Ishida Y, Agata Y, Shibahara K and Honjo
T: Induced expression of PD-1, a novel member of the immunoglobulin
gene superfamily, upon programmed cell death. EMBO J. 11:3887–3895.
1992. View Article : Google Scholar : PubMed/NCBI
|
45
|
Ishida M, Iwai Y, Tanaka Y, Okazaki T,
Freeman GJ, Minato N and Honjo T: Differential expression of PD-L1
and PD-L2, ligands for an inhibitory receptor PD-1, in the cells of
lymphohematopoietic tissues. Immunol Lett. 84:57–62. 2002.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Eppihimer MJ, Gunn J, Freeman GJ,
Greenfield EA, Chernova T, Erickson J and Leonard JP: Expression
and regulation of the PD-L1 immunoinhibitory molecule on
microvascular endothelial cells. Microcirculation. 9:133–145. 2002.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Zhou WY, Zhang MM, Liu C, Kang Y, Wang JO
and Yang XH: Long noncoding RNA LINC00473 drives the progression of
pancreatic cancer via upregulating programmed death-ligand 1 by
sponging microRNA-195-5p. J Cell Physiol. 234:23176–23189. 2019.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Lee A, Lim S, Oh J, Lim J, Yang Y, Lee MS
and Lim JS: NDRG2 expression in breast cancer cells downregulates
PD-L1 expression and restores T cell proliferation in
tumor-coculture. Cancers (Basel). 13:61122021. View Article : Google Scholar : PubMed/NCBI
|
49
|
Que Y, Xiao W, Guan YX, Liang Y, Yan SM,
Chen HY, Li QQ, Xu BS, Zhou ZW and Zhang X: PD-L1 expression is
associated with FOXP3+ regulatory T-cell infiltration of soft
tissue sarcoma and poor patient prognosis. J Cancer. 8:2018–2025.
2017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Chen JX, Yi XJ, Gao SX and Sun JX: The
possible regulatory effect of the PD-1/PD-L1 signaling pathway on
Tregs in ovarian cancer. Gen Physiol Biophys. 39:319–330. 2020.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Wang Y, Lin J, Cui J, Han T, Jiao F, Meng
Z and Wang L: Prognostic value and clinicopathological features of
PD-1/PD-L1 expression with mismatch repair status and desmoplastic
stroma in Chinese patients with pancreatic cancer. Oncotarget.
8:9354–9365. 2017. View Article : Google Scholar : PubMed/NCBI
|
52
|
Velcheti V, Schalper KA, Carvajal DE,
Anagnostou VK, Syrigos KN, Sznol M, Herbst RS, Gettinger SN, Chen L
and Rimm DL: Programmed death ligand-1 expression in non-small cell
lung cancer. Lab Invest. 94:107–116. 2014. View Article : Google Scholar : PubMed/NCBI
|
53
|
Soliman H, Khalil F and Antonia S: PD-L1
expression is increased in a subset of basal type breast cancer
cells. PLoS One. 9:e885572014. View Article : Google Scholar : PubMed/NCBI
|
54
|
Danilova L, Ho WJ, Zhu Q, Vithayathil T,
De Jesus-Acosta A, Azad NS, Laheru DA, Fertig EJ, Anders R, Jaffee
EM and Yarchoan M: Programmed cell death ligand-1 (PD-L1) and CD8
expression profiling identify an immunologic subtype of pancreatic
ductal adenocarcinomas with favorable survival. Cancer Immunol Res.
7:886–895. 2019. View Article : Google Scholar : PubMed/NCBI
|